Системная динамика и агентное моделирование

Тема. Агентное моделирование

Дисциплина для магистрантов специальности «Математика и компьютерные науки» профилизации «Компьютерная математика системный анализ»

доц. Лаврова О.А.

механико-математический факультет, БГУ, Минск

2025

Агентное моделирование

Areнтное моделирование (agent-based modeling) — это один из подход имитационного моделирования

История

Первые публикации по агентному моделированию появились в 1980-х годах.

Агентное моделирование поначалу являлось преимущественно предметом теоретических дискуссий в академических кругах, а начиная с 2000-х годов разработчики имитационных моделей стали использовать его на практике.

И. Григорьев, AnyLogic

Мотивация

Агентное моделирование дает возможность моделирования эмерджентных (интегративных) свойств системы или поведения системы без прямой реализации этих свойств или поведения, а как результата построения модели системы по ее локальной информации: идентификация агентов и их поведения/отношений.

... "grow" the macroscopic phenomenon from the bottom up... It allows us to trace how individual (micro) rules generate macroscopic regularities.

J.M. Epstein

В агентном моделировании правила поведения агентов, определяемые исследователем, формируют поведение системы

Принцип иерархии «агент-система» в основе АМ

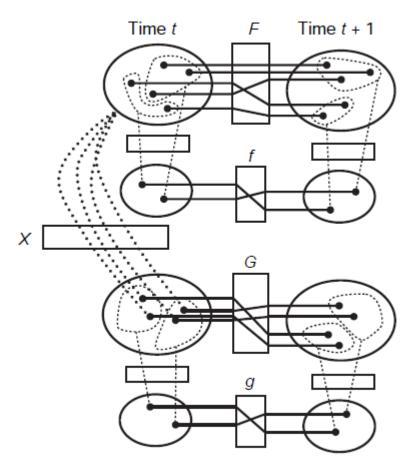


Figure 3.3. Modeling complex systems. The behavior of the entities at one level in the world ($upper\ panel$) might result in new entities emerging (via function X) that take on new types of behaviors that require a new class of models ($lower\ panel$).

J.H. Miller, S.E. Page, Complex adaptive systems, 2007

Принцип холизма в основе АМ

A system has holistic properties possessed by none of its parts. Each of the system parts has properties not possessed by the system as a whole. More specific, it is very important to recognize that the whole is not something additional to the parts: it is the parts in a definite structural arrangement and with mutual activities that constitute the whole.

R.L. Ackoff, 1971

Принцип темноты в основе АМ

Системный принцип темноты (principle of darkness)

Each element in the system is ignorant of the behavior of the system as a whole, it responds only to information that is available to it <u>locally</u>. This point is vitally important. If each element 'knew' what was happening to the system as a whole, all of the complexity would have to be present in that element.

W.R. Ashby, An introduction to cybernetics, 1956

Архитектура агентной модели

Агентная модель состоит из агентов, отношений и среды.

Агент – центральная концепция агентного моделирования.

Агент – это компонент модели, который моделирует некоторую сущность/объект (люди в различных ролях, транспортные средства, нематериальные вещи (проекты, инвестиции), организации, страны и др.), и обладает определенными характеристиками.

Каждый агент явно определяется в агентной модели.

Характеристики агента в агентной модели

- Агент ведет себя автономно, управляя собственными действиями (*Autonomy*). Управление децентрализовано в системе
- Агент обладает активностью, он взаимодействует локально с другими агентами в некоторой среде (Sociality) и/или с локальной областью среды (Reactivity). Взаимодействие определяется правилами поведения и правилами принятия решений. Правила могут быть простыми (if-then) или в виде абстрактных моделей (алгоритмы обучения с подкреплением, генетические алгоритмы и др.)
- Агент имеет состояния, которые определяют поведение агента (*Conditionality*)
- Агент имеет границу (*Modularity*)
- Агент может обладать ресурсами и памятью
- Агент может быть целенаправленным (<u>локальный оптимизатор</u>), адаптироваться и самообучаться на основе собственного опыта (*Pro-Activity*)

Архитектура агентной модели: отношения І

В каждый момент времени агент взаимодействует только с некоторыми агентами; такие агенты называются соседями.

В каждый момент времени агент взаимодействует только с локальной областью среды. (state-mediated contact structures, de Marchi, Page, 2014)

Архитектура агентной модели: отношения II

Состояние агента — это значения атрибутов агента в некоторый момент времени.

Конфигурация агентной модели в момент времени t — это множество состояний всех агентов модели в момент времени t.

Поведение агента может зависеть от

- текущей конфигурации агентной модели,
- от прошлых конфигураций (имитация памяти),
- от действий агентов, с которыми происходит взаимодействие.

Описание поведения агента в AnyLogic

Поведение агента может быть задано различными способами. Если у агента есть состояния, от которых зависят его действия, то его поведение задается с помощью диаграммы состояний. Переходы между состояниями осуществляются по событиям. Иногда поведение агента задается действиями, выполняемыми при наступлении определенных событий.

И. Григорьев, AnyLogic

- Диаграмма состояний (карта состояний, стейтчарт), как расширение конечного автомата, соответствует в AnyLogic стандарту UML. Диаграмма состояний является графическим изображением состояний объекта и переходов между ними. В заданный момент времени агент может находиться только в одном состоянии. Любой агент может иметь несколько параллельно работающих диаграмм состояний.
- Поддерживаются следующие типы событий: по таймауту, с заданной интенсивностью, получение сообщения, выполнение логического условия, по прибытию агента.

Архитектура агентной модели: среда I

Среда определяет условия существования, действий и взаимодействий агентов.

Среда задается топологией отношений между агентами:

- дискретная (двумерный массив, в одной ячейке не более одного агента)
- непрерывная (евклидово пространство)
- графы статические или динамические
- ГИС (географическое пространство, заданное картой)
- *soup* (положение в пространстве является не существенным атрибутом агента)

Архитектура агентной модели: среда II

Среда обеспечивает информацию о пространственном положении агента. В среде должно быть определено понятие локальности. Возникает проблема поиска ближайших соседей в среде в зависимости от топологии отношений.

Среда обладает состояниями.

Среда задается явно.

Разработка агентной модели

Структура агентной модели может быть задана как графически (например, в AnyLogic), так и с помощью сценариев.

И. Григорьев, AnyLogic

Инструменты для агентного моделирования:

- AnyLogic
- NetLogo
- MESA in Python
- Repast (Recursive Porous Agent Simulation Toolkit) in Java
- и др.

Архитектура агентной модели в AnyLogic

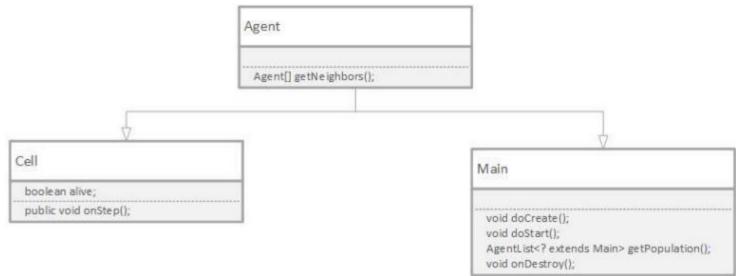
Agent является базовым классом для агентов.

Создание стандартной агентной модели в AnyLogic заключается в задании двух типов агентов на основе Agent:

- Main -- для описания ОДНОГО объекта высокого уровня, который будет содержать все агенты модели. Агент типа Main играет роль среды для других агентов.
- **Person** -- для описания агентов модели. Группа агентов, как объекты класса Person будут содержаться в Main.

Иерархии типов агентов могут быть различными. Например, агенты-компании, агенты-служащие, агенты-клиенты и т.д.

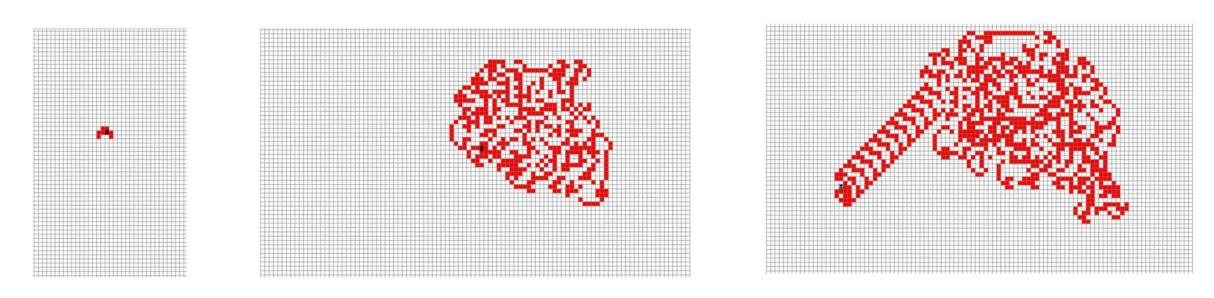
Описание агентной модели


- ODD(Overview, Design and Details)-протокол является одним из основных стандартов описания агентных моделей
- «The primary objectives of ODD are to make model descriptions more understandable and complete, thereby making ABMs less subject to criticism for being irreproducible»

Grimm, 2010

Пример AM на основе клеточного автомата I

Игра «»Жизнь» -- самый знаменитый клеточный автомат. Описывает популяцию организмов, развивающихся во времени и пространстве в соответствии с заданными законами размножения и вымирания.


Несмотря на то, что эволюционные правила игры известны и их число невелико, предсказать заранее результат эволюции невозможно, пока последовательно не будут пройдены все поколения от начальной конфигурации до искомой.

Курсовая работа Легушева Дмитрия (КМиСА, 2 курс, 2017), реализация AnyLogic и Python

Пример AM на основе клеточного автомата II

Муравей Лэнгтона — пример клеточного автомата, в котором один агент взаимодействует со средой. Курсовая работа Галушкина Дмитрия (КМиСА, 2 курс, 2019), реализация AnyLogic

Пример AM на основе клеточного автомата III

Моделирование биологических систем. Организмы рождаются, умирают, движутся, размножаются и питаются энергией. Курсовая работа Ключник Карины (КМиСА, 2 курс, 2020), реализация

AnyLogic, Matlab, Mathematica

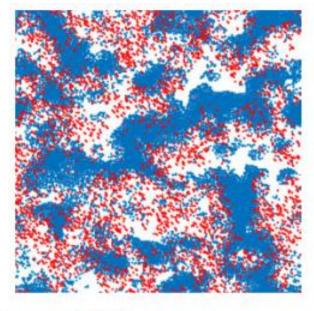
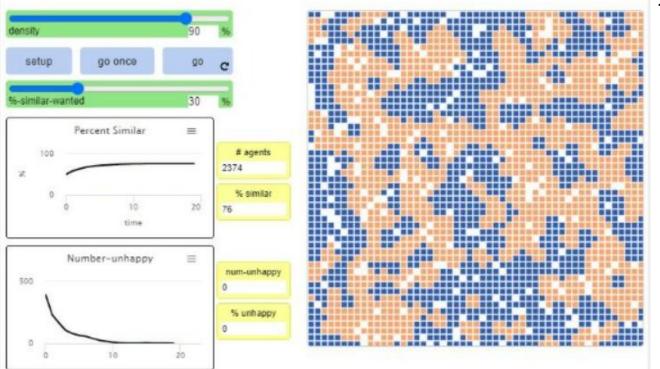
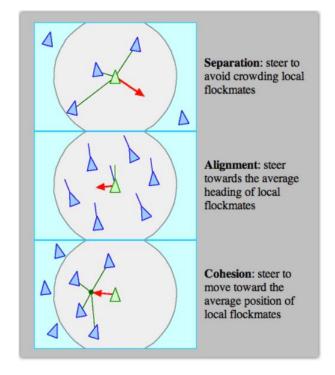



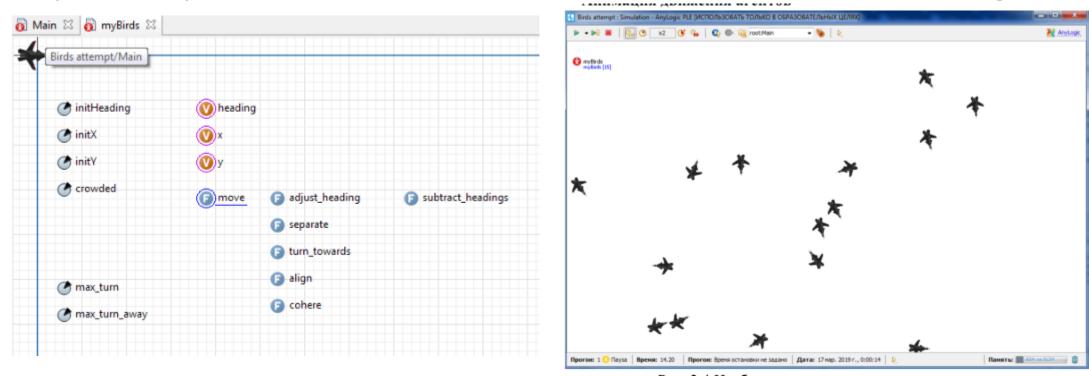
Рисунок 2.12. Система многоклеточныеодноклеточные-питательный раствор.

Пример агентной модели: модель Шеллинга

- Процесс сегрегации это процесс пространственного перераспределения социальной группы на подгруппы за счет миграции, основанной на локальном критерии комфортности каждого участника (агента) системы. Критерием комфортности является желание агента жить в соседстве с себе подобными
- Первая агентная модель процесса сегрегации предложена и исследована Т. Шеллингом для двумерной модели города в виде клеточного автомата


T. Schelling, Micromotives and Macrobehavior, 1978

- Курсовая работа Ананич Анастасии (КМиСА, 3 курс, 2019), реализация в AnyLogic, анализ чувствительности
- Дипломная работа Сторовойтовой Виктории (КМиСА, 4 курс, 2019) реализация модели в дискретной и непрерывной среде


Пример агентной модели: Boids Flocking I

- Классический пример самоорганизации системы (стаи птиц)
- Агентом в системе является «птица», действие которой описывается тремя правилами (separation, alignment, cohesion)

C. Reynolds, "Flocks, Herds, and Schools: A Distributed Behavioral Model", 1987

Пример агентной модели: Boids Flocking II

- Курсовая работа Сторовойтовой Виктории (КМиСА, 3 курс, 2018), реализация на Python, объектный подход
- Курсовая работа Галушкина Дмитрия (КМиСА, 2 курс, 2019), попытка выстроить птиц в цепочки (глобальное поведение) через определение локальных правил поведения
- Курсовая и дипломная работа Пашкевич Ангелины (КМиСА, 3 курс, 2019, 4 курс 2020) моделирование с учетом препятствий в среде, комбинирование агентного моделирования и численного моделирования на основе МКЭ

Сравнительная характеристика агентного моделирования и системной динамики

	Системная динамика	Агентное моделирование
Базовый элемент		
модели	Петля обратной связи	Агент
		Правила поведения
Область анализа	Структура системы	агента
Уровень		
моделирования	Макроуровень	Микроуровень
Направление		
моделирования	Сверху вниз	Снизу вверх
Время	Непрерывное	Дискретное
	Математика	
Аппарат в основе	(дифференциально-интеграль-	
моделирования	ные уравнения)	Логика (поведения)

Д.Ю. Каталевский, Основы имитационного моделирования и системного анализа в управлении, 2015

Целесообразность агентного моделирования

- Исследуемая система естественным образом состоит из взаимодействующих агентов, поведение которых поддается определению
- Разработка агентной модели возможна в отсутствии знания о поведении системы на глобальном уровне
- Агентную модель проще поддерживать: уточнения обычно делаются на локальном уровне и не требуют глобальных изменений
- Возможность реализации в моделях адаптации агентов, т.е. изменения правил поведения и принятия решений агентами индивидуально во время процесса моделирования
- Возможность реализации в моделях самообучения агентов

Недостатки агентного моделирования

- На сегодняшний день нет единого соглашения об определении агента в контексте агентного моделирования, за исключением свойства автономности (Autonomy)
- Собрать статистику по характеристикам индивидуальных объектов сложнее, чем по агрегированным показателям
- Тяжело проверить соответствие агентной модели реальной системе (validation)