
Бизнес-анализ

Лекция 3

Программа на сегодня

• Краткое введение в ИТ и создание программных продуктов

Программное обеспечение (Software)

- ПО компьютерные программы, процедуры и, возможно, соответствующая документация и данные, относящиеся к функционированию компьютерной системы (IEEE Std 829—2008)
- ПО программа или множество программ, используемых для управления компьютером (IEEE Std 829—2008)
- ПО совокупность программ системы обработки информации и программных документов, необходимых для эксплуатации этих программ (ГОСТ 19781-90)
- Термин Software предложен Аланом Тьюрингом и впервые использован в этом смысле Джоном Тьюки в 1957 году

Первая компьютерная программа

- Первую компьютерную программу в 1842 году написала Ада Лавлейс
- Программа была написана для аналитической машины Чарльза Бэббиджа
- Программа вычисляла последовательность чисел Бернулли

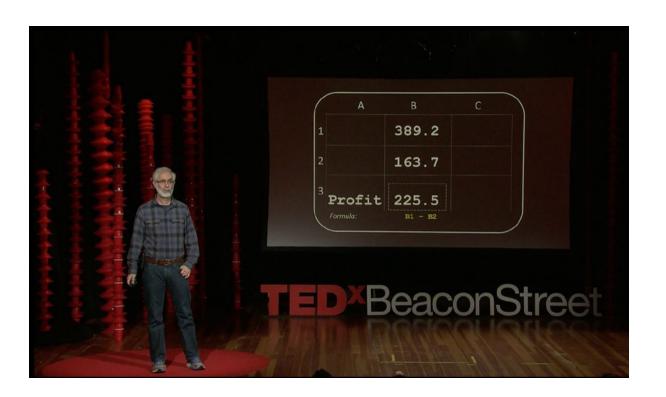
ė		Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	Data.				Working Variables.								
0	Nature of Operation.					1V ₁ 0 0 0 1	1V ₂ O 0 0 2	1V ₃ O 0 0 4 n	°V₄ ○ 0 0 0	°V ₅	°V ₆ ○ 0 0	0V ₇ ○ 0 0 0 0 0	0 0 0 0	°V ₉ ○ 0 0 0 0	°V ₁₀ ○ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	°V ₁₁ ○ 0 0 0	©V ₁₂ O 0 0 0	
1	×	1V ₂ × 1V ₃	1V4, 1V5, 1V6		= 2 n		2	n	2 n	2 n	2 n							
2	-	1V4 - 1V1	2V4	$\left\{ {}^{1}V_{4} = {}^{2}V_{4} \atop {}^{1}V_{1} = {}^{1}V_{1} \right\}$	= 2 n - 1	1			2n - 1									
3	+	1V ₅ +1V ₁	2V _δ	$\left\{ \begin{array}{l} {}^{1}V_{5} = {}^{2}V_{5} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{array} \right\}$	= 2 n + 1	1				2n + 1							1625	
4	+	$^2V_5 \div ^2V_4$	ıv ₁₁	$\left\{ \begin{array}{l} 2V_{\delta} = {}^{0}V_{\delta} \\ 2V_{\bullet} = {}^{0}V_{\bullet} \end{array} \right\}$	$=\frac{2n-1}{2n+1} \dots \dots$				0	0						$\frac{2n-1}{2n+1}$	Pres	DIT 500
5	+	V ₁₁ ÷1V ₂	2V ₁₁	$\left\{ {}^{1}V_{11} = {}^{2}V_{11} \\ {}^{1}V_{2} = {}^{1}V_{2} \right\}$	$=\frac{1}{2}\cdot\frac{2n-1}{2n+1}\dots$		2								***	$\frac{1}{2} \cdot \frac{2n-1}{2n+1}$		-
6	-	V ₁₃ -2V ₁₁	ıv ₁₃	$\left\{ \begin{smallmatrix} 2V_{11} = {}^{0}V_{11} \\ {}^{0}V_{13} = {}^{1}V_{13} \end{smallmatrix} \right\}$	$=-\frac{1}{2}\cdot\frac{2^{n}-1}{2^{n}+1}=\Lambda_{0}$											0		$-\frac{1}{2}$
7					= n - 1 (= 3)	1		n							n-1			

Виды программного обеспечения (по назначению)

Прикладное ПО

- Офисные приложения (редакторы текста, электронные таблицы)
- Средства общения (почта, чаты, мессенджеры)
- Доступ к контенту (браузеры, медиа-плееры)
- Бизнес-приложения (ERP, CRM, принятие решений)
- Обработка текста, изображений, видео и звука
- Проектирование (CAD, вычисления, симуляция)
- Специализированное ПО (медицина, банки, транспорт, коммуникации)
- Инфраструктурное ПО (базы данных, почтовые серверы)
- Утилиты (архивация, антивирусы, криптография)
- Игры

Вредоносное ПО


Системное ПО

- OC
- Драйверы устройств
- Прошивки
- Системы управления пакетами
- Серверы
- Утилиты

API

Средства программирования

- Компиляторы
- Интерпретаторы
- Редакторы кода
- IDE

В <u>своем выступлении</u> на TED Даниэль Бриклин рассказывает о создании VisiCalc, прародителя всех электронных таблиц

Рекомендуется к просмотру

Виды программного обеспечения (лицензирование)

Несвободное (проприетарное) ПО

- Ограничения на коммерческое использование
- Ограничения на распространение
- Ограничение на модификацию

ПО по умолчанию является проприетарным

Бесплатное и условно-бесплатное ПО

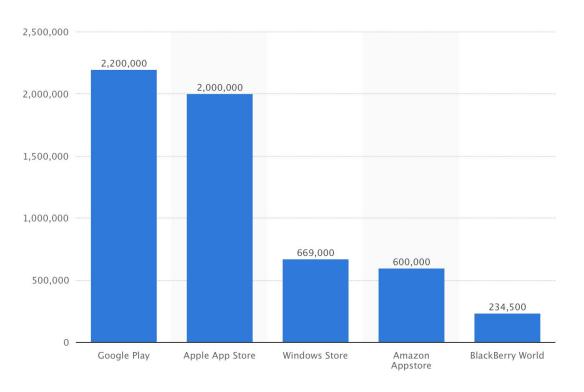
- Freeware
- Shareware
- Чаще всего распространяется без исходного кода и является проприетарным

ПО в общественном достоянии

- Передано в общественное достояние
- Не защищается авторскими правами
- Нет никаких ограничений

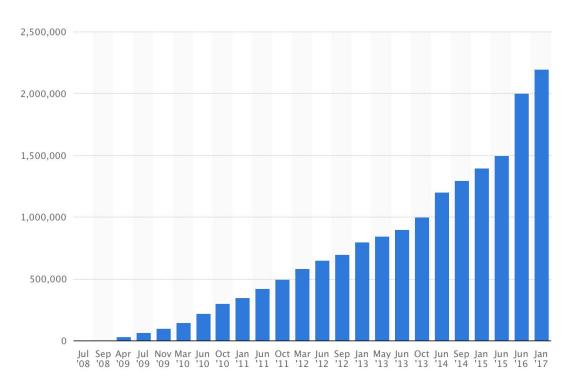
Свободное ПО

- Программу можно свободно использовать с любой целью
- Можно изучать, как программа работает, и адаптировать её для своих целей
- Можно свободно распространять копии программы
- Программу можно свободно улучшать и публиковать свою улучшенную версию
- Доступность исходного текста программы и возможность внесения в него модификаций и исправлений

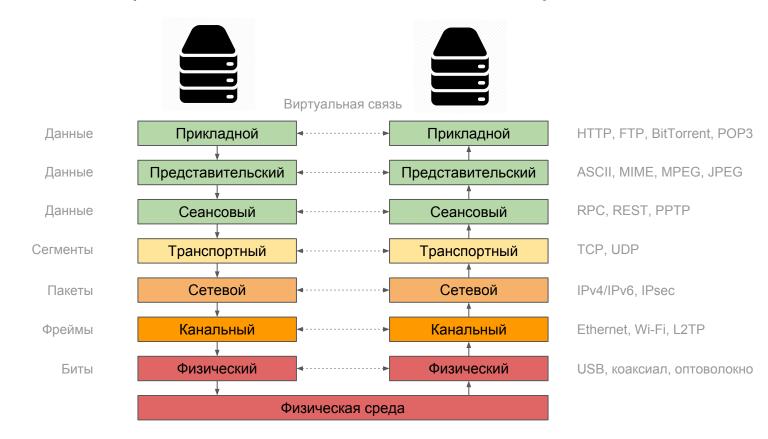

Открытое ПО

- ПО с открытым кодом (Open Source)
- Общественное достояние или открытые лицензии (GNU, BSD, Apache, MIT)
- Возможность дорабатывать программы и исправлять в них ошибки (насколько позволяет лицензия)
- Разновидность -- свободное и открытое ПО

Основные платформы


Десктопная ОС	Windows, MacOS, Linux
Мобильная ОС	Android (Google Play, Amazon), iOS (App Store)
Серверная ОС	Linux
<u>Облако</u>	SaaS (Software as a Service) Google Apps, Office 365, Dropbox, WordPress PaaS (Platform as a Service) Heroku, Google App Engine IaaS (Infrastructure as a Service) Amazon Web Services, Microsoft Azure
Мобильный веб (Браузер)	Движок JavaScript внутри Chrome, Firefox, Safari, Opera и других браузеров
Виртуальная машина	Виртуальная машина Java, реализующая кроссплатформенность
Приложение	Плагины и расширения
Другое	Smart TV, автомобили, носимые устройства (умные часы, фитнес-трекеры), IoT (Internet of Things)

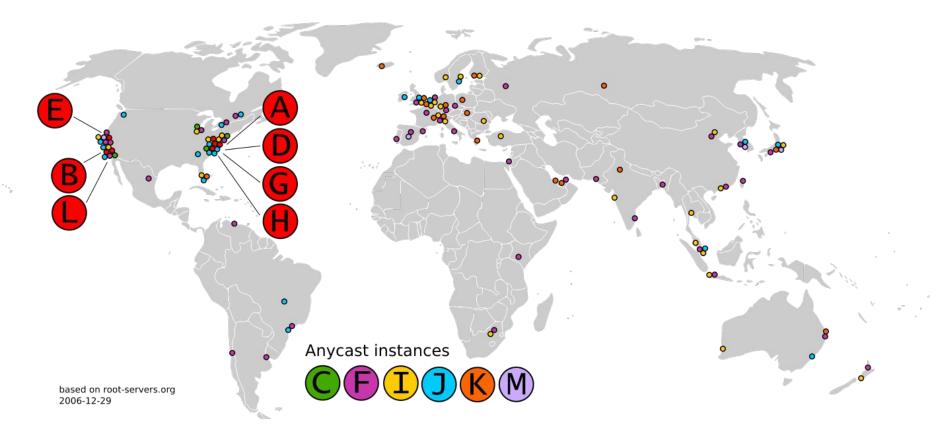
Емкость магазинов приложений (лето 2016)



https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-store s/

Рост количества приложений в App Store

Модель OSI (связи открытых систем)



Как работает Интернет (упрощенная схема)

Регистрация **доменного** имени

- Лицо или организация регистрирует доменное имя у аккредитованного для этой деятельности регистратора
 - Домены нулевого уровня .com, .net, .org и другие управляются международной некоммерческой организацией <u>ICANN</u>
 - Субдомены дополнительно регистрировать уже не нужно
 - Данные о регистрации домена можно получить на <u>специализированных сайтах</u> (поиск по запросу whois)
- Регистратор вносит данные о домене в реестр, указывая DNS сервера, на которые будет делегирован домен

13 корневых DNS-сервера и их зеркала

Как работает Интернет (упрощенная схема)

Развертывание продукта

- На сервере происходит развертывание операционной системы, а также всего необходимого для работы продукта:
 - О Серверы приложений и баз данных
 - Среда выполнения
 - Библиотеки
 - Данные
- Практический любой веб-проект не обходится одним сервером, а требует целую инфраструктуру
 - Google по некоторым оценкам имеет 1-2 миллиона физических серверов
 - Современные компании используют инфраструктуру дата-центров
- Облачные технологии позволяют сэкономить:
 - SaaS -- обойтись без программистов
 - PaaS -- обойтись без системных администраторов
 - laaS -- обойтись без собственного датацентра

Как работает Интернет (упрощенная схема)

Пользовательский запрос

- Пользователь делает запрос к серверу используя браузер (или напрямую)
 - Наиболее распространненным является НТТР запрос
 - Другие распространенные протоколы --SMTP/IMAP/POP3 (почта), BitTorrent, FTP
- Структура НТТР запроса
 - Метод (GET, POST, PUT, DELETE)
 - о Путь
 - Сервер
 - Дополнительные заголовки

```
GET /wiki/page.html HTTP/1.1

Host: ru.wikipedia.org

User-Agent: Mozilla/5.0 (X11; U; Linux i686; ru;

rv:1.9b5) Gecko/2008050509 Firefox/3.0b5

Accept: text/html

Connection: close
(пустая строка)
```

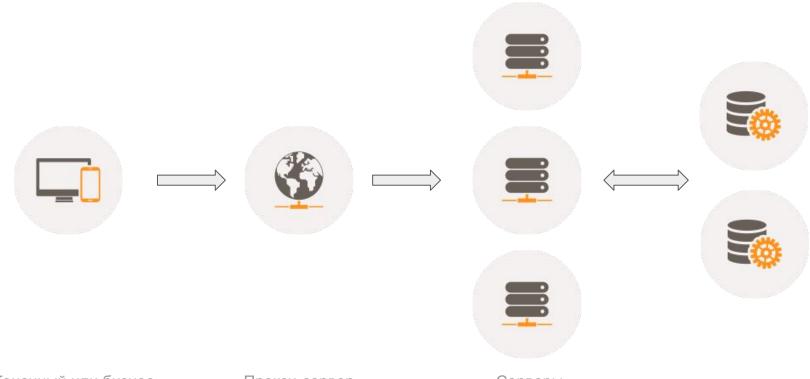
Структура URL

Примеры:

```
https://example.com/path/path?date=2017-02-19&amount=3
https://example.com/path/#info
https://example.com/path/
https://example.com/
```

Как работает Интернет (упрощенная схема)

Ответ сервера


- Доменное имя в запросе преобразуется в IP адрес
 - Связка домен-IP может быть в кэше компьютера или провайдера
 - В крайнем случае IP адрес можно получить у DNS сервера
- Производится физический запрос к IP адресу
- Ответ сервера

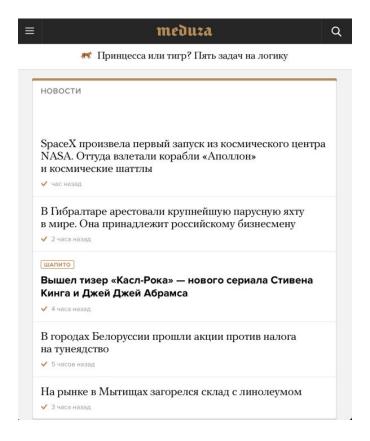
```
HTTP/1.1 200 OK
Date: Sun, 19 Feb 2017 11:20:59 GMT
Server: Apache
X-Powered-By: PHP/5.2.4-2ubuntu5wm1
Last-Modified: Sun, 19 Feb 2017 10:43:12 GMT
Content-Language: ru
Content-Type: text/html; charset=utf-8
Content-Length: 1234
Connection: close
(пустая строка)
(текст страницы)
```

Основные коды состояние НТТР

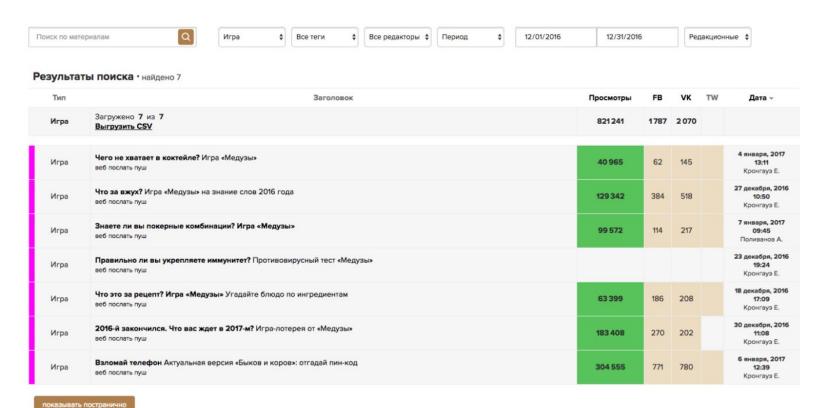
200	ок	ОК
301	Moved Permanently	Перемещено навсегда
302	Moved Temporarily	Перемещено временно (редирект)
400	Bad Request	Плохой запрос (неверные названия или значения параметров)
401	Unauthorized	Требуется аутентификация
403	Forbidden	Запрос не может быть выполнен из-за ограничений в доступе
404	Not Found	Ресурс не найден
500	Internal Server Error	Внутренная ошибка сервера
503	Service Unavailable	Сервер недоступен

Веб-проект: упрощенная схема

Конечный или бизнес-пользователь


Прокси-сервер или балансировщик Серверы приложений

Базы данных


Веб-проект: основные интерфейсы

Пример: Meduza.io

Пример: Meduza.io

Пример: ECB References Rates API

```
▼ < gesmes: Envelope xmlns: gesmes="http://www.ge
  <gesmes:subject>Reference rates</gesmes:su
 ▼<gesmes:Sender>
    <gesmes:name>European Central Bank</gesm
  </gesmes:Sender>
 ▼ < Cube >
   ▼<Cube time="2017-02-17">
      <Cube currency="USD" rate="1.0650"/>
      <Cube currency="JPY" rate="120.08"/>
      <Cube currency="BGN" rate="1.9558"/>
      <Cube currency="CZK" rate="27.021"/>
      <Cube currency="DKK" rate="7.4334"/>
      <Cube currency="GBP" rate="0.85720"/>
      <Cube currency="HUF" rate="308.32"/>
      <Cube currency="PLN" rate="4.3305"/>
      <Cube currency="RON" rate="4.5223"/>
      <Cube currency="SEK" rate="9.4478"/>
      <Cube currency="CHF" rate="1.0637"/>
      <Cube currency="NOK" rate="8.8645"/>
      <Cube currency="HRK" rate="7.4410"/>
      <Cube currency="RUB" rate="61.9668"/>
      <Cube currency="TRY" rate="3.9117"/>
      <Cube currency="AUD" rate="1.3892"/>
```

Актуальные курсы валют от Евроцентробанка доступны по адресу

http://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml

Ч. Петцольд Код. Тайный язык информатики

Ф. Брукс Мифический человеко-месяц или Как создаются программные системы

Kypc "Web 2.0 Programming"

- На сайте можно скачать интересный курс по введению по интернетпрограммирование от китайского университета Sun Yat-sen University
- <u>Скачать ZIP со слайдами</u> (22 МБ)
- Курс 2010 года, поэтому веб-технологии уже ушли далеко вперед
- Но это отличное введение в предмет

Интересно про ИТ

- 40 ключевых концепций информационных технологий доступно и понятно
- The Internet
- How does the Internet works
- Meet the seven people who hold the keys to worldwide internet security
- Что именно происходит, когда пользователь набирает в адресной строке google.com? <u>Часть 1</u>
 + Часть 2
 - Что такое RESTful на самом деле
- 15 тривиальных фактов о правильной работе с протоколом HTTP
- Вы опасно некомпетентны в криптографии
- Почему веб-приложения на мобильных платформах работают медленно

Интересно про ИТ

- Масштабируемая веб-архитектура и распределенные системы
- Джон Кармак о науке и искусстве разработки ПО
- <u>10 правил, которые позволяют NASA писать миллионы строк кода с минимальными ошибками</u>
- Кризис ожирения сайтов
- Интервью с разработчиком инопланетного софта
- Перчатки для тех, кто всё усложняет
- <u>Уроки написания утилитки на \$1 000 000</u>
- <u>Как устроена система управления контентом в издании «Медуза»</u> + <u>через год</u>
- Как мы делали облачную систему автоматизации ресторанного бизнеса
- Рассказ о том, как я упростил себе службу в армии при помощи Excel и VBA :)