Бизнес-анализ

Лекция 2

Программа на сегодня

- Понятие системы в системной инженерии
- Логическое и физическое описание системы
- Жизненный цикл системы
- Догматы системной инженерии

Системная инженерия Среда Предоставляет Поставляется Взаимодействие потребности Выявляет потребности Заказчик Система Процессы жизненного цикла системы **Поддерживает** Результат Специфицирует систему Системный инженер Реализует Задача системного инженера в том, чтобы систему обеспечить работу отдельных механизмов системы как единого целого Разработка

не являются системными инженерами, но им крайне необходимы навыки системного мышления

Системный аналитик и бизнес-аналитик

Системы

Что такое система?

- Слово "система" происходит от латинского systēma, которое в свою очередь происходит от греческого σύστημα, что означает "целое, составленное из частей"
- Мы встречаемся с этим термином повсюду:
 - Нервная система, система железных дорог, система коммуникаций
 - Система образования, социальная система, банковская система
 - Приведите другие примеры систем
- В общем смысле система представляет собой:
 - о целое, являющее результатом взаимодействия ее элементов,
 - о сгруппированных в определенном порядке
 - о для достижения определенной цели

Альтернативные определения системы

A system is a set of elements in interaction (фон Берталанфи)

Множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство (БСЭ, Садовский)

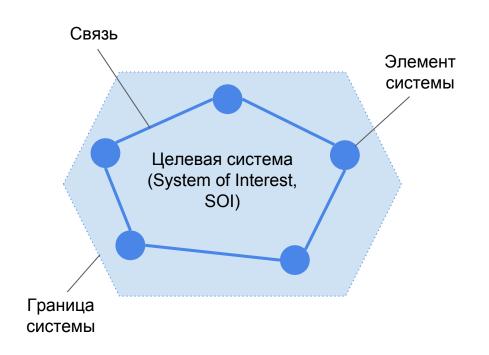
Совокупность элементов, объединенных общей средой функционирования и целью функционирования (Хомяков)

Сущность, которая в результате взаимодействия ее частей может поддерживать свое существование и функционировать как единое целое (О'Коннор, Макдермотт)

Альтернативные определения системы

Совокупность элементов или частей, упорядоченных определенным образом и связанных друг с другом в структуру, которая демонстрирует характерные типы поведения

(Медоуз)


Отграниченный объект в среде, который:

- Имеет цель, функционирует и развивается
- Имеет источники энергии и материалов
- Ему присуще управление с использованием информации о внешней среде и собственном состоянии
- Состоит из взаимосвязанных компонентов, выполняющих определенные функции
- Обладает интегративным свойством

(Скляров/Жилин)

Система в системной инженерии

- Система -- это набор элементов, которые взаимодействуют для достижения заданной цели
- Цель системы:
 - формулируется бизнесом и стейкхолдерами
 - является отправной точкой для проектирования
 - дает возможность понять, все ли было правильно сделано
- Элементы, связи и внешняя граница являются результатом проектирования
- Система должна быть способна достигать своей цели автономно,
 т.е. ею можно управлять независимо от других систем

Некоторые важные классы систем

Открытые, закрытые

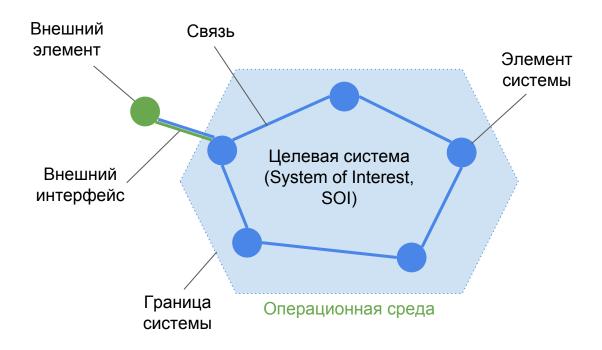
Естественные, искусственные, модифицированные человеком

Абстрактные, конкретные

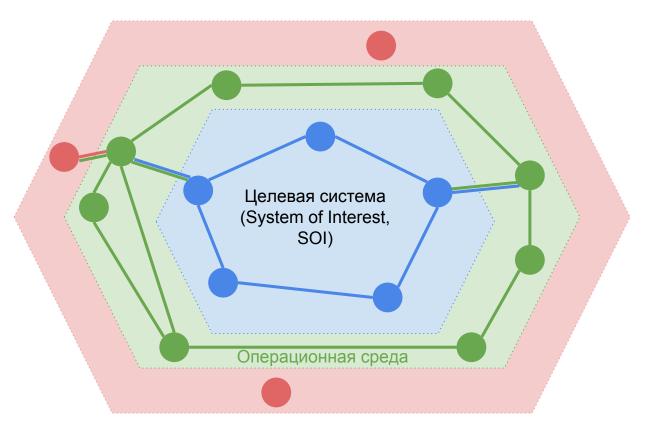
Прецедентные, беспрецедентные

Статические, динамические, гомеостатические

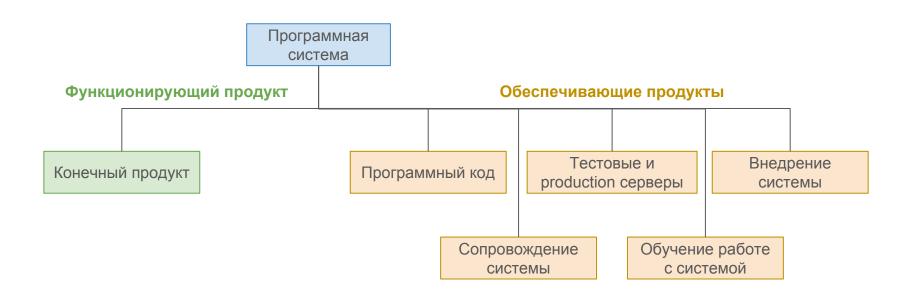
Гомогенные, гетерогенные


Мягкие, жесткие

Централизованные, децентрализованные


Некоторые важные классы систем

Открытые, закрытые Естественные, искусственные, модифицированные человеком Абстрактные, конкретные Прецедентные, беспрецедентные Статические, динамические, гомеостатические Гомогенные, гетерогенные Мягкие, жесткие Централизованные, децентрализованные Область системной инженерии


Система и ее внешняя среда

Система и ее внешняя среда

Система как продукт

Система как возможность достижения цели

Самолет (основное оборудование)

Система как возможность достижения цели

Персонал

(пилоты, диспетчеры, персонал аэропорта)

(заправка топливом,

Самолет

(основное оборудование)

Данные

(расписание, технические схемы, спецификации оборудования)

Обучение персонала MINISTER MANAGEMENT AND AND ADDRESS OF THE PARTY OF THE P

(обучение пилотов и членов экипажа, диспетчеров, работников аэропорта)

Службы аэропорта

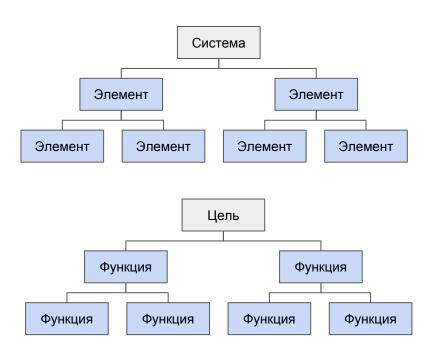
багаж, ремонт)

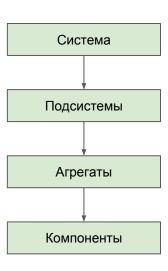
Сооружения

(терминалы, ВПП, вышки, парковка)

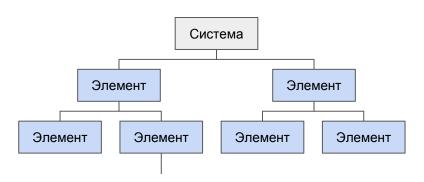
Организационная структура

(подразделения, руководство)

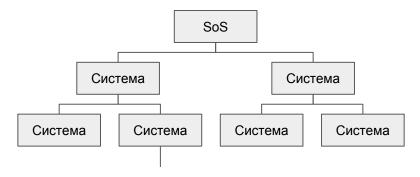

Правила и процедуры


(регламенты, правила провоза багажа, правила безопасности)

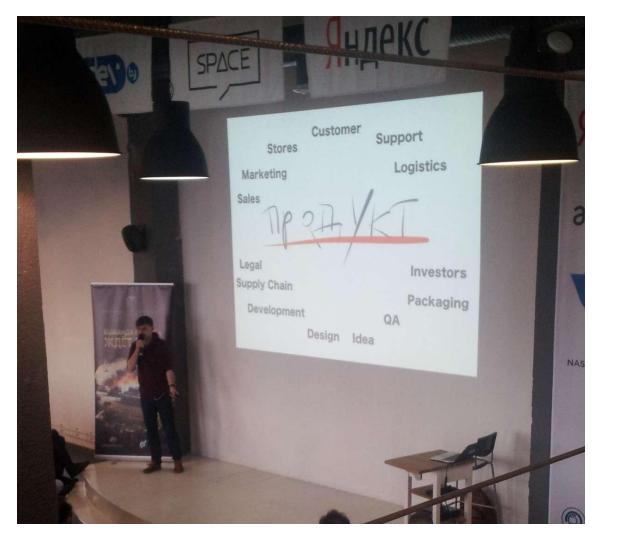
Логическое и физическое описание системы

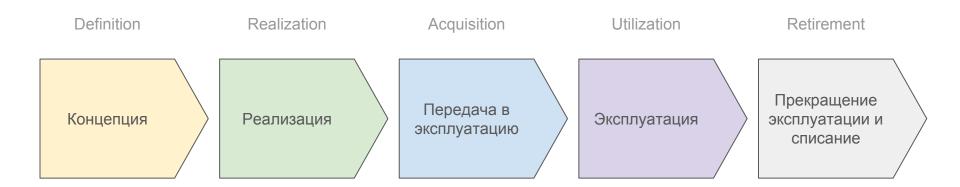

Логическое описание: Что?

Физическое описание: Как?



Система систем (System of Systems, SoS)




Оптимизирован под цели системы Система оптимизирована

Оптимизирована под свои цели SoS не оптимизирована

Жизненный цикл системы (продукта)

- Этап концептуального дизайна -- это переход из мира бизнеса в мир инженерии
- Этот этап включает в себя разработку требований к системе, что требует вовлечения бизнесруководства и стейкхолдеров верхнего уровня
- Этап включает в себя последовательную разработку трех видов требований:
 - о бизнес-требований
 - требований стейкхолдеров
 - о спецификации системы

- Реализация -- это этап когда непосредственно разрабатываются подсистемы, агрегаты и компоненты системы
- У любой системы есть разработчик (supplier) и потребитель (acquirer)
- Разработчик может быть частью принимающей организации, но довольно часто он является внешним контрактором (подрядчиком)
- Если контрактор не может осуществить разработку полностью, то он нанимает субподрядчиков

Передача в эксплуатацию

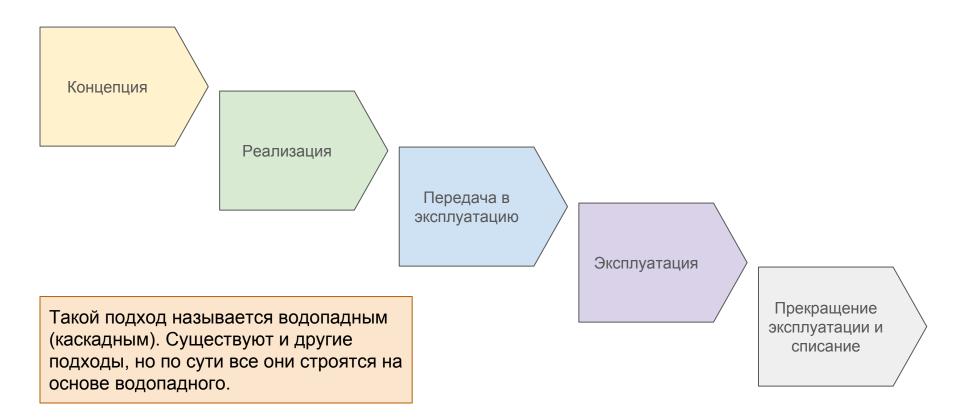
- Этап разработки завершается внедрением системы на мощностях потребителя
- При передаче системы происходит ее проверка (ассерtance test) на соответствие требованиям принимающей стороны
- В современных проектах такая проверка производится в конце каждой итерации



- Система продолжает подвергаться модификациям даже в фазе эксплуатации
- Основные причины:
 - Устранение ошибок
 - Соответствие изменившимся внутренним и внешним требованиям
 - Улучшение производительности
- Если внесение изменений в систему становится нецелесообразным, то система переводится в состояние поддержания жизнедеятельности (maintenance)

Прекращение эксплуатации и списание

- Система используется до тех пор пока *:
 - У бизнеса есть в ней потребность
 - Система предоставляет необходимые функции
 - Ее содержание оправданно по финансовым или политическим соображениям
- В противном случае система терминируется, ее жизненный цикл завершается


^{*} Даже ИТ-системы могут эксплуатироваться очень длительный срок

Жизненный цикл продукта

Потребность	Потребность ⇒ Запрос предложения (Request for Proposal, RFP) ⇒ Тендер ⇒ Предложение ⇒ Контракт
Проектирование	Инициирование ⇒ Планирование ⇒ Разработка требований
Разработка	Проектирование архитектурного решения ⇒ Разработка ⇒ Тестирование
Развертывание	Развертывание ⇒ Пользовательское тестирование (User Acceptance Testing, UAT)
Функционирование	Функционирование продукта
Поддержка	Поддержка ⇒ Закрытие продукта ⇒ 🥦

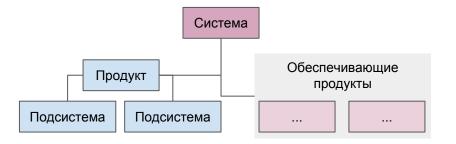
Водопад (Waterfall)

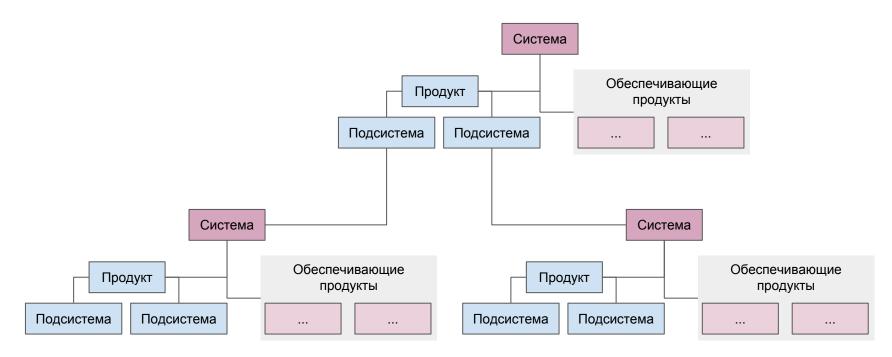
Системная инженерия

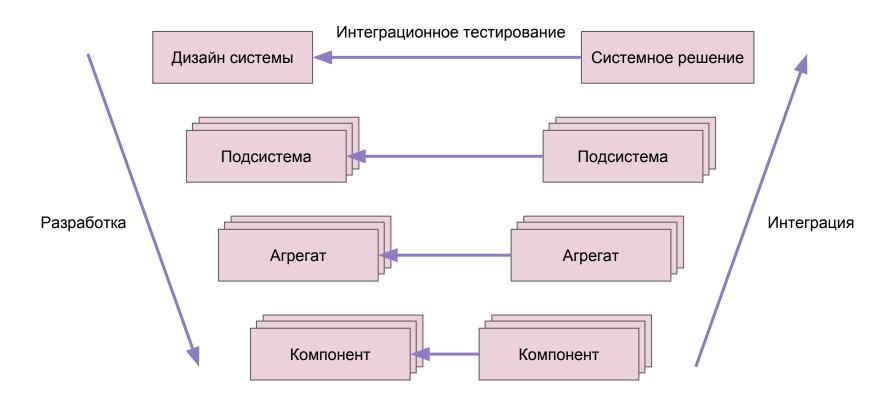
Догматы системной инженерии

Подход "сверху-вниз"

Инженерия требований


Фокус на полном ЖЦ


Оптимизация и баланс системы


Интеграция различных дисциплин

Управление

- Традиционная инженерия работает "снизу-вверх", создавая компоненты и интегрируя их пока не получится желаемая система
- Это подходит для хорошо сформулированных проблем и простых систем
- Но не подходит для сложным систем с большим количеством связей
- Системный инженер начинает с рассмотрения системы в целом и разрабатывает требования на этом уровне
- Далее рассматриваются подсистемы для которых разрабатываются свои требования и так далее
- Процесс останавливается, когда получено полное представление о системе

Инженерия требований

- Полные и точные требования являются фундаментом для успеха системы
- После получения от бизнеса первоначальных требований происходит их детализация до уровня самого маленького компонента.
- ВАЖНО: Плохие требования никогда не могут быть исправлены хорошим проектированием.
- Важным свойством требований является их трассируемость, то есть способность проследить:
 - Как требования верхнего уровня реализуются на более низких уровнях
 - Как низкоуровневые требования связаны с верхнеуровневыми
- Трассируемость нужна как разработчику, так и клиенту, так как позволяет отследить, что в проект включено все, что требовалось и только оно

Фокус на полном ЖЦ

- Системный инженер фокусируется не каком-то определенном этапе, а учитывает весь ЖЦ системы
- Ошибочным является стремление удешевить этап реализации без рассмотрения того, как это скажется на затратах во время следующих этапов
- Например, дешевая машина с высоким уровнем затрат при использовании (расход бензина, запчасти) является худшим выбором по сравнению с дорогой машиной с низкими накладными расходами

Оптимизация и баланс системы

- Системный инженер ориентирован на оптимизацию на системном уровне, так как оптимально спроектированные подсистемы не обязательно формируют оптимальную систему.
- Примером может служить установка двигателя от болида F1 на машину семейного типа
- Разрабатывая систему надо иметь в виду социальные, этические, культурные, психологические факторы

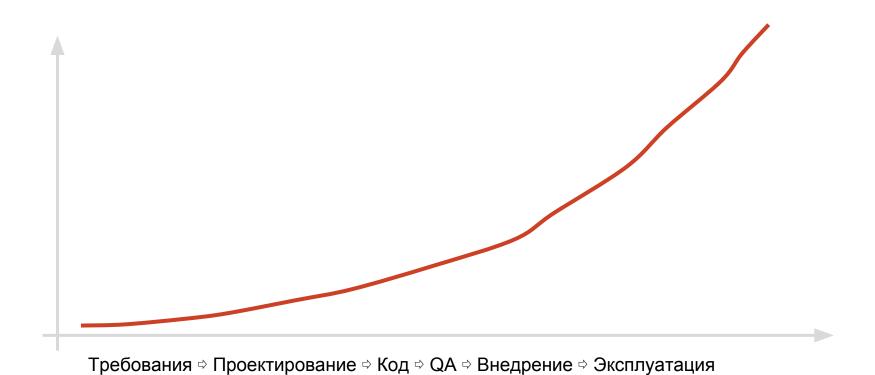
Интеграция различных дисциплин

- Трудно представить систему, разработка которой требует специалистов только одной дисциплины
- Например, создание системы "самолет" потребует работы инженеров разных дисциплин -- аэронавтика, металлургия, безопасность, электроника, логистика, тестирование, поддержка
- Также потребуются специалисты неинженерных дисциплин -- маркетинг, юристы, финансы
- Интеграция всех этих дисциплин является одной из важнейших частей системной инженерии ввиду сложности системы, контрактных связей между сторонами, их географической разделенности

Управление

- Системный инженер -- это не только техническая, но и управленческая роль
- Проектный менеджмент должен поставить продукт вовремя с нужной функциональностью и не выходя за рамки бюджета
- Системный инженер, инженер по требованиям и проектный менеджер работают в связке для того, чтобы так и случилось

Преимущества, получаемые при корректном


Снижение стоимости этапов ЖЦ

Снижение технических рисков

применении системной инженерии:

Качественный продукт

Рост стоимости изменений

Ссылки по системной инженерии

Системная инженерия является отдельной дисциплиной, но вы можете по своему желанию ознакомиться с нею:

- Системная инженерия по Анатолию Левенчуку
- Курс лекций Анатолия Левенчука
- Introduction to Systems Engineering by UNSW Australia (The University of New South Wales) (курс на Coursera.org)
- Guide to the Systems Engineering Body of Knowledge (SEBoK)