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Consider the system

u̇ = −v + p(u, v), v̇ = u + q(u, v), (1)

where p and q are convergent series without free and linear terms. It has
a center at the origin (all trajectories are ovals) iff it is locally analytically
equivalent to a system of the form

ẋ = ix(1 + g(xy)), ẏ = −iy(1 + g(xy)), (2)

where, i =
√
−1, x = u + iv and y = x̄ .

=⇒ xy is a first integral of (2)
=⇒ u2 + v2 + h.o.t. is a first integral of (1)

Theorem (Poincaré-Lyapunov)

System (1) has a center at the origin iff it admits a first integral of the
form u2 + v2 + h.o.t.

We discuss a generalization of the center problem (the Poincaré
integrability problem) to n-dim systems.
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ẋ = Ax + f(x), (3)

A is n × n matrix, x = (x1, . . . , xn)τ , f(x) = (f1(x), . . . , fn(x))τ , and fi
are series starting with at least quadratic terms.
Let λ = (λ1, . . . , λn) be the n–tuple of eigenvalues of A. Set
Z+ = N ∪ 0. For α = (α1, . . . , αn) ∈ Zn

+ denote

〈λ, α〉 =
n∑

i=1

αiλi

and |α| = α1 + · · ·+ αn. Let

R = {α ∈ Zn
+| 〈λ, α〉 = 0, |α| > 0},

and denote by rλ the rank of vectors in the set R.
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A substitution
x = Φ(y) := y + ϕ(y), (4)

transforms (3) to its Poincaré–Dulac normal form, i.e. a system of the
form

ẏ = Ay + g(y), (5)

where g(y) = (g1(y), . . . , gn(y))τ contains only resonant terms, that is,
each monomial in gk , k = 1, . . . , n, is of the form g (α)yαek with

〈λ, α〉 − λk = 0,

where ek is the n–dimensional unit vector with its nth component equal
to 1 and the others all equal to zero. We call the transformation (4) a
normalization.
The normalization containing only nonresonant terms is unique. We call
this normalization a distinguished normalization and term the
corresponding Poincaré–Dulac normal form a distinguished normal form.
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Convergence of the normalizing transformation

Normalization (4) does not necessarily converge, so generally speaking ϕ
and g are formal power series.
Poincaré domain in Cn is the set of all points (z1, . . . , zn) such that the
convex hull of the set {z1, . . . , zn} ⊂ C does not contain the origin. Then
if the vector (λ1, . . . , λn) of eigenvalues of A in (3) lies in the Poincaré
domain then there exists a convergent normalizing transformation.

Theorem (C. L. Siegel)

Suppose there exist positive constants C > 0 and ν > 0 such that for all
α ∈ Nn

0 such that |α| > 1 and for all k ∈ {1, . . . , n} the inequality∣∣∣∣∣
n∑

i=1

αiλi − λk

∣∣∣∣∣ ≥ C |α|−ν (6)

holds. Then there exists a convergent transformation of (3) to normal
form.
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Theorem ( V. A. Pliss)

Suppose that for system (3)
(i) the nonzero elements among the

∑n
j=1 αjλj − λk satisfy condition (6)

(ii) some formal normal form of (3) is linear.
Then there exists a convergent transformation to normal form.

Bryuno conditions that together are sufficient for existence of a
convergent normalizing transformation:

1) Condition ω: for w` = min(α, λ) over all α ∈ Nn
0 for which (α, λ) 6= 0

and |α| ≤ 2l ,
∑

2−` ln w` <∞;
2) Condition A (simplified version): some normal form has the form

ẏ = (1 + g(y))Ay, (7)

that is, ẏj = λjyj(1 + g(y)) for some scalar function g(y).

Following to S. Walcher we say that (3) satisfies the Pliss-Bryuno
condition if it can be transformed to (7) by a normalizing transformation.
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For simplicity we assume that A is in Jordan normal form and lower
triangular.

Definition

System (3) is (locally) analytically (or formally ) integrable if it has
n − 1 functionally independent analytic (or formal) first integrals in a
neighborhood of the origin.

Theorem (X. Zhang, Llibre-Pantazi-Walcher)

System (3) has n − 1 functionally independent analytic first integrals in a
neighborhood of the origin if and only if rλ = n − 1 and the distinguished
normal form of (3) satisfies the Pliss-Bruno condition.
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Example: Recursive Construction of a Formal First Integral

u̇ = −v + P(u, v ,w) = P̃(u, v ,w)

X : v̇ = u + Q(u, v ,w) = Q̃(u, v ,w) λ ∈ R \ {0}

ẇ = −λw + R(u, v ,w) = R̃(u, v ,w)

(8)

P, Q, and R are real analytic in a neighborhood of the origin.
We look for a function Φ(u, v ,w) with undetermined coefficients φjk`,

Φ(u, v ,w) = u2 + v2 +
∑

j+k+`=3

φjk`u
jvkw `, (9)

such that
∂Φ

∂u
P̃ +

∂Φ

∂v
Q̃ +

∂Φ

∂w
R̃ ≡ 0. (10)

Obstacles for the fulfillment of (10) will give us the necessary conditions
for the existence of a first integral of the form

Φ(u, v ,w) = u2 + v2 + . . . . (11)

A computational procedure to find the first m − 1 conditions for
integrability is as follows.
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• Write down the initial string of (9) up to order 2m,

Φ2m(u, v ,w) = u2 + v2 +
∑2m

j+k+`=3 φjk`u
jvkw `.

• For each i = 3, . . . , 2m + 1 equate coefficients of terms of order i in
the expression

∂Φ2m

∂u
P̃ +

∂Φ2m

∂v
Q̃ +

∂Φ2m

∂w
R̃−g1(u2+v2)2−· · ·−gm−1(u2+v2)m (12)

to zero obtaining 2m − 2 systems of linear variables in unknown
variables φjk`.
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Computing in this way one obtains a list of polynomials, g1, g2, g3, . . . in
parameters of system (8). We call the polynomial gi the i -th focus
quantity (Lyapunov number). Each polynomial gi represents an obstacle
for existing of integral (9), that is, system (8) admits an integral (11) iff

g1 = g2 = g3 = · · · = 0.

The set of systems with a first integral of the form (11) is the set of
common zeros of an infinite system of polynomials

g1 = g2 = g3 = · · · = 0. (13)

Conditions (13) are the necessary conditions for existence of first integral
Φ(u, v ,w) = u2 + v2 + . . . in system (8).
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Two difficulties in computing the necessary conditions for integrability:

1) Polynomials g1, g2, g3, . . . are not uniquely defined (depend on the
choice of resonant terms).
Let X be the vector field associated to system (3).
Let ψ(x) be a series. We call the term ψ(α)xα a resonant term if α ∈ R
(〈α, λ〉 = 0).

2) Solving even a finite system of polynomials

g1 = g2 = g3 = · · · = gk = 0

can be an extremely laborious problem.
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Uncertain choice of gi

Theorem (VR, Y. Xia, X. Zhang, J. Differential Equations, 2014)

For system (3) the following statements hold.
(a) There exist series ψ(x) with its resonant monomials arbitrary such
that

X (ψ(x)) =
∑
α∈R

pαxα, (14)

where pα are functions of the coefficients of (3).
(b) If the vector field (3) has n − 1 functionally independent analytic or
formal first integrals, then for any ψ satisfying (14), we have

pα = 0, for all α ∈ R. (15)

(c) Assume that the rank of R is k, i.e. rλ = k, and there are k
functionally independent ψ(1), . . . , ψ(k), such that for the corresponding

coefficients in (14) hold p
(i)
α = 0, for all α ∈ R, i = 1, . . . , k. Then

the vector field X has exactly k functionally independent analytic or
formal first integrals.
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Definition

The variety of an ideal I generated by f1(x1, . . . , xn), . . . , f1(x1, . . . , xn) of
the polynomial ring F[x1, . . . , xn] is the set of all points in Fn where all
polynomials of I vanish. (The variety of I is denoted by V(I )).

W.l.o.g we can take ψ
(i)
α = 0 for resonant α. Then pα are polynomials.

Denote by B the ideal generated by the polynomials pα, for some choice
of n − 1 functionally independent functions ψ(1), . . . , ψ(n−1) satisfying
(14), i.e.

B = 〈p(i)
α | α ∈ R, i = 1, . . . , n − 1〉. (16)

By the equivalence of (b) and (c) with k = n − 1 the variety of B, V(B),
is the set of all points in the space of parameters of system (3), such that
the corresponding systems have n − 1 functionally independent integrals.
We call V(B) the integrability variety of system (3).
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To find the variety of B we can choose n − 1 linearly independent vectors
from R, let say α1, . . . , αn−1 ∈ R. Then xα1 , . . . , xαk are functionally
independent (integrals of the system of the linear approximation) and we
look for n − 1 functions ψs(x) = xαs + higher order terms satisfying

X (ψ(s)(x)) =
∑
α∈R

p(s)
α xα.

In actual calculations we can find only a finite number of polynomials

p
(s)
α , so we compute few first polynomials p

(s)
α which generate some ideal

Bm. Then,
a) we find the irreducible decomposition of V(Bm) (solve the polynomial

system p
(s)
α = 0),

b) using different methods we try to show that V(B) = V(Bm), that is,
all systems corresponding to points from V(Bm) have n − 1 functionally
independent analytic or formal first integrals.
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Solving polynomial systems

To make a progress it is crucial to have an efficient approach for solving
systems of polynomials of many variables:

f1(x1, . . . , xn) = 0,

............................

fm(x1, . . . , xn) = 0.

(17)

Let us find the variety in C3 of the ideal I = 〈f1, f2, f3, f4〉, where

f1 =8x2y2 + 5xy3 + 3x3z + x2yz ,

f2 =x5 + 2y3z2 + 13y2z3 + 5yz4,

f3 =8x3 + 12y3 + xz2 + 3,

f4 =7x2y4 + 18xy3z2 + y3z3.

(18)

that is, the solution set of the system
f1 = 0, f2 = 0, f3 = 0, f4 = 0 . Under the lexicographic ordering
with x > y > z a Gröbner basis for I is G = {g1, g2, g3}, where g1 = x ,
g2 = y3 + 1

4 , g3 = z2. f1 = f2 = f3 = f4 = 0 ⇐⇒ g1 = g2 = g3 = 0
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This method ALWAYS works when the set of solution is finite: compute
a Gröbner basis with respect to a lexicographic order, the basis MUST be
triangular (like in Gauss row-echelon form, but with non-linear equations).
We have the following computational obstacle:
in the example below the following polynomial appears in the
intermediate computations of the Gröbner basis:

y3 − 1735906504290451290764747182.... (19)

The integer in the second term of the above polynomial contains roughly
80,000 digits.

At least theoretically the Groebner basis theory allows to solve
polynomial systems with a finite number of solutions.
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Infinite number of solutions

In generic case the variety consists of infinitely many points.

”To solve” a polynomial system means to find a decomposition of the
variety of the ideal (the zero set) into irreducible components, that is, to
find a representation V = V1 ∪ · · · ∪ Vm, where each Vi is irreducible.

Example. For J = 〈xy , xz〉, the variety of J (xy = zx = 0) is the union of
the plane x = 0 and the line y = z = 0.
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There are 3 algorithms for irreducible decompositions, all implemented in
Singular:
G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0. A
Computer Algebra System for Polynomial Computations. Centre for
Computer Algebra, University of Kaiserslautern (2005).
http://www.singular.uni-kl.de.
– Gianni–Trager–Zacharias (1988) (minAssGTZ)
– Shimoyama–Yokoyama (1996) (primdecSY)
– Characteristic sets method (Wang, 1992) (minAssChar)
(the first one is implemented also in Maple)

>LIB "primdec.lib";

>ring r=0,(a20,a11,a02,a13,b31,b20,b11,b02),dp;

>poly g11=a11-b11;

>poly g22=a20*a02-b02*b20;

>poly g33=(3*a20^2*a13+8*a20*a13*b20+3*a02^2*b31

-8*a02*b02*b31-3*a13*b20^2-3*b02^2*b31)/8;

>poly g44=(-9*a20^2*a13*b11+a11*a13*b20^2

+9*a11*b02^2*b31-a02^2*b11*b31)/16;

>poly g55=(-9*a20^2*a13*b02*b20+a20*a02*a13*b20^2

+9*a20*a02*b02^2*b31+18*a20*a13^2*b20*b31

+6*a02^2*a13*b31^2-a02^2*b02*b20*b31

-18*a02*a13*b02*b31^2

-6*a13^2*b20^2*b31)/36;
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>ideal i = g11,g22,g33,g44,g55;

>minAssGTZ(i);

[1]:

_[1]=a02-3*b02

_[2]=a11-b11

_[3]=3*a20-b20

[2]:

_[1]=b11

_[2]=3*a02+b02

_[3]=a11

_[4]=a20+3*b20

_[5]=3*a13*b31+4*b20*b02

[3]:

_[1]=a11-b11

_[2]=a20*a02-b20*b02

_[3]=a20*a13*b20-a02*b31*b02

_[4]=a02^2*b31-a13*b20^2

_[5]=a20^2*a13-b31*b02^2
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Modular arithmetic approach

The notorious computational difficulty of the Gröbner basis calculations
over the field of rational numbers is an essential obstacle for using the
Gröbner basis theory for the real world applications.

Modular calculations: choose a prime number p and do all calculations
modulo p, that is, in the finite field of the characteristic p (the field
Zp = Z/p). The modular calculations still keep essential information on
our original system and it is often possible to extract this information
from the result of calculations in Zp and to obtain the exact solution of
polynomial system over the field of rational numbers.
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P. Wang’s algorithm for the rational reconstruction
Step 1. u = (u1, u2, u3) := (1, 0,m), v = (v1, v2, v3) := (1, 0, c)
Step 2. While

√
m/2 ≤ v3 do

{q := bu3/v3c, r := u − qv , u := v , v := r}
Step 3. If |v2| ≥

√
m/2 then error()

Step 4. Return v3, v2
b·c stands for the floor function.
Given an integer c and a prime number p the algorithm produces integers
v3 and v2 such that v3/v2 ≡ c (mod p), that is, v3 = v2c + pt with some
t. If such a number v3/v2 does need not exist the algorithm returns
”error()”.

For the discussed example computing the Gröbner basis of (18) over the
field of characteristic 32003 we find G = {x , y3 + 8001, z2}.
Rational reconstruction yields 8001 ≡ 1/4 (mod 32003). Therefore the
reconstructed (lifted) Gröbner basis is G = {x , y3 + 1/4, z2}.
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P. Wang’s algorithm for the rational reconstruction
Step 1. u = (u1, u2, u3) := (1, 0,m), v = (v1, v2, v3) := (1, 0, c)
Step 2. While

√
m/2 ≤ v3 do

{q := bu3/v3c, r := u − qv , u := v , v := r}
Step 3. If |v2| ≥

√
m/2 then error()

Step 4. Return v3, v2
b·c stands for the floor function.
Given an integer c and a prime number p the algorithm produces integers
v3 and v2 such that v3/v2 ≡ c (mod p), that is, v3 = v2c + pt with some
t. If such a number v3/v2 does need not exist the algorithm returns
”error()”.
For the discussed example computing the Gröbner basis of (18) over the
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Radical Membership Test

For a polynomial f and an ideal I = 〈f1, . . . , fm〉 in k[x1, . . . , xn], k = C,
f is equal to zero on V(I )) if and only if the reduced Gröbner basis of the
ideal 〈1− wf , f1, . . . , fm〉 (here w is a new variable) is equal to {1}.

Allows to check if zero sets of I = 〈f1, . . . , fm〉 and J = 〈h1, . . . , hs〉 are
the same in Cn.
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Decomposition Algorithm with Modular Arithmetics
(VR and M. Prešern, J. Comput. Appl. Math., 2011)

Choose a prime number p and compute the minimal associated
primes Q̃1, . . . , Q̃s of I = 〈f1, . . . , fs〉 in Zp[x1, . . . , xn].

Using the rational reconstruction algorithm lift the ideals Q̃i

(i = 1, . . . , s) to the ideals Qi in Q[x1, . . . , xn]

For each i using the radical membership test check whether the
original polynomials f1, . . . , fs vanish on the components Qi of the
decomposition (on V(Qi )), i.e. whether the reduced Gröbner basis
of the ideal 〈1− wf ,Qi 〉 is equal to {1}. If ”yes”, then go to the
step 4, otherwise take another prime p and go to step 1.

Compute Q = ∩si=1Qi ⊂ Q[x1, . . . , xn].

Check that
√

Q =
√

I , i.e, ∀ g ∈ Q the reduced GB of the ideal
〈1− wg , I 〉 is {1} and ∀ f ∈ I the reduced GB of 〈1− wf ,Q〉 is
equal to {1}. If it is the case then V(I ) = ∪si=1V(Qi ). If not, then
choose another prime p and go to Step 1.
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Example: a 3-dim system

System with (0 : −1 : 1) resonant point at the origin:

ẋ1 =
m∑

i+j+k=2

pijkx i
1x j

2xk
3 = P(x),

ẋ2 =− x2 +
m∑

i+j+k=2

qijkx i
1x j

2xk
3 = Q(x),

ẋ3 = x3 +
m∑

i+j+k=2

rijkx i
1x j

2xk
3 = R(x),

(20)

P,Q,R are polynomials and x = (x1, x2, x3) ∈ C3.
For system (20) λ = (0,−1, 1), thus, the set Rλ is

R = {α ∈ N3
+ | α2 = α3}. (21)

ψ1 = x1 +
∑
|α|>1

φ(α)xα (22)

ψ2 = x2x3 +
∑
|α|>2

ψ(α)xα. (23)
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There are series ψ1(x) and ψ2(x),

ψ1 = x1 +
∑
|α|>1

ψ
(α)
1 xα (24)

ψ2 = x2x3 +
∑
|α|>2

ψ
(α)
2 xα, (25)

such that

∂ψ1

∂x1
P +

∂ψ1

∂x2
Q +

∂ψ1

∂x3
R =

∑
α∈R

gα(a, b, c)xα (26)

and

∂ψ2

∂x1
P +

∂ψ2

∂x2
Q +

∂ψ2

∂x3
R =

∑
α∈R

hα(a, b, c)xα, (27)

where P,Q,R are the right hand sides of (20) and gα, hα (α ∈ R) are
polynomials in (a, b, c).
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Denote by B the ideal generated by the polynomials gα and hα,
B = 〈gα, hα|α ∈ R〉, and by V(B) its variety – V(B) is the integrability
variety of (20).

The set of all integrable systems (20) in the space of parameters of the
system is the variety V(B) of the Bautin ideal B and it is the same for
any choice of series (24) and polynomials gα, hα (α ∈ R) satisfying (26)
and (27).

After decomposition of V(B) using the decomposition algorithm with
modular arithmetic we obtain the necessary condition of integrability.
The next step: prove their sufficiency.
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Two main mechanisms for integrability:

Darboux integrability

Time-reversibility

dz

dt
= F (z) (z ∈ Ω), (28)

F : Ω 7→ T Ω is a vector field and Ω is a manifold.

Definition

A time-reversible symmetry of (28) is an invertible map T : Ω 7→ Ω, such
that

d(Tz)

dt
= −F (Tz). (29)
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By Llibre, Pantazi and Walcher (2012) if a system (30) is time-reversible
with respect to a linear invertible transformation which permutes x2 and
x3 then it is integrable.

ẋ1 =
∑

ajklx
j
1xk

2 x l
3, ẋ2 = x2

∑
bmnpxm

1 xn
2 xp

3 , ẋ3 = x3
∑

cqrsxq
1 x r

2x s
3 .

(30)
Let u, v , w be the number of parameters of the first, the second and the
third equation, respectively. By (a, b, c) we denote the (u + v + w)-tuple
of parameters of system (30).
System (30) is time-reversible if there exists an invertible matrix T such
that

T−1 ◦ f ◦ T = −f . (31)
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We look for a transformation T in the form

T =

 1 0 0
0 0 γ
0 1/γ 0

 . (32)

(31) is satisfied for T defined by (32) if and only if

ajkl = −γ l−kajlk , bmnp = −γp−ncmpn. (33)

Denote by k[a, b, c] the ring of polynomials in parameters of system (30)
with the coefficients in a field k and

H = 〈1− yγ, ajkl + γ l−kajlk , bmnp + γp−ncmpn〉, (34)

where y is a new variable.

Valery Romanovski Integrability and reversibility in systems of ODEs



Rational implicitization

Suppose we are given the system of equations

x1 =
f1(t1, . . . , tm)

g1(t1, . . . , tm)
, . . . , xn =

fn(t1, . . . , tm)

gn(t1, . . . , tm)
, (35)

where fj , gj ∈ k[t1, . . . , tm] for j = 1, . . . , n. Let W = V(g1 · · · gn).
Equations (35) define

F : km \W → kn

by

F (t1, . . . , tm) =
( f1(t1, . . . , tm)

g1(t1, . . . , tm)
, . . . ,

fn(t1, . . . , tm)

gn(t1, . . . , tm)

)
. (36)

The image of km \W under F denote by F (km \W ) is not necessarily an
affine variety.
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Consequently we look for the smallest affine variety that contains
F (km \W ), i.e, its Zariski closure F (km \W ). The problem of finding
F (km \W ) is known as the problem of rational implicitization (e.g. Cox
et al, 2003).

Rational implicitization theorem

Let k be an infinite field, let f1, . . . , fn and g1, . . . , gn be elements of
k[t1, . . . , tm], let W = V(g1 · · · gn), and let F : km \W → kn, be the
function defined by equations (36). Set g = g1 · · · gn. Consider the ideal

J = 〈f1 − g1x1, . . . , fn − gnxn, 1− gy〉 ⊂ k[y , t1, . . . , tm, x1, . . . , xn],

and let
Jm+1 = J ∩ k[x1, . . . , xn]. (37)

Then V(Jm+1) is the smallest variety in kn containing F (km \W ).

Jm+1 is computing using the Elimination Theorem.
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Elimination Theorem

Fix the lexicographic term order on the ring k[x1, . . . , xn] with
x1 > x2 > · · · > xn and let G be a Groebner basis for an ideal I of
k[x1, . . . , xn] with respect to this order. Then for every `, 0 ≤ ` ≤ n − 1,
the set G` := G ∩ k[x`+1, . . . , xn] is a Groebner basis for the ideal
I` = I ∩ k[x`+1, . . . , xn] (the `–th elimination ideal of I ).
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Computation of I = k[a, b] ∩ H

Theorem (Hu, Han, R., 2013)

The Zariski closure of all time-reversible (with respect to (32)) systems
inside the family (30) with coefficients in the field k (k is R or C) is the
variety V(IS) of the ideal

IS = k[a, b, c] ∩ H. (38)

A generating set for IS (called the Sibirsky ideal) is obtained by
computing a Groebner basis for H with respect to any elimination order
with {y , γ} > {a, b, c} and choosing from the output list the polynomials
which do not depend on y and γ.

Corollary

Let IS be ideal (38) of system (20). Then all systems from V(IS) are
integrable.
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A generalization in the case of Lotka-Volterra system,
V.R. & D. Shafer, preprint, 2015

ẋ1 = x1A1(x1, x2, x3), ẋ2 = x2(1 + A2(x1, x2, x3)), ẋ3 = −x3(1 + A3(x1, x2, x3))
(39)

Theorem

Suppose Aj(x , y , z) is a homogeneous polynomial function of degree m,
j ∈ {1, 2, 3} and that system (39) is transformed to system

ẏ1 = y1B1(y1, y2, y3), ẏ2 = −y2(1 + h(y1, y2, y3)), ẏ3 = y3(1− h(y1, y2, y3)).
(40)

by

y1 =
k1x1
f 1/m

, y2 =
k2x3
f 1/m

, y3 =
k3x2
f 1/m

, (41)

where f = 1 + F and F (x , y , z) is homogeneous polynomial function of
degree m.
If B(y1, y3, y2) = −B(y1, y2, y3) and h(y1, y3, y2) = −h(y1, y2, y3) then
system (39) has two functionally independent local analytic first integrals
in a neighborhood of the origin.
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Moreover:
F = 1

2 (A2 + A3) f = 1 + F
G (x , y , z) = F ( x

k1
, z
k3
, y
k2

) g = 1− G .

uj(x)
def
= xj

∂f

∂xj
(x), j ∈ {1, 2, 3}

uj(x) = g(y)−1uj(
y1
k1
, y3k3 ,

y2
k2

)
def
= g(y)−1ûj(y).

Aj(x) = g(y)−1Aj(
y1
k1
, y3k3 ,

y2
k2

)
def
= g(y)−1Âj(y),

[û1Â1 + û2(g + Â2)− û3(g + Â3)]
def
= S .

B = Â1 − 1
mS and h = − 1

2 (Â2 − Â3) + 1
mS . (42)
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Example

Some conditions for complete integrability of system

ẋ1 = x1(a1x2
1 + a2x1x2 + a4x2

2 + a3x1x3 + a5x2x3 + a6x2
3 )

ẋ2 = x2(1 + b1x2
1 + b2x1x2 + b4x2

2 + b3x1x3 + b5x2x3 + b6x2
3 )

ẋ3 = −x3(1 + c1x2
1 + c2x1x2 + c4x2

2 + c3x1x3 + c5x2x3 + c6x2
3 )

(43)

Theorem

System (43) admits two analytic local first integrals of the form
Ψ1(x1, x2, x3) = x1 + · · · and Ψ2(x1, x2, x3) = x2x3 + · · · provided the
parameter string (a, b, c) lies in the set V(I1) ∪ V(I2) ∪ V(I3) ∪ V(I4) for
the ideals:
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Ideal Generators
I1 a1, a5, b1, b2, b3, b5, b6, c1, c2, c3, c4, c5, a23b4 + a22c6, a23a4 + a22a6 + a22c6, a6b4 − a4c6 + b4c6

a1, a5, b1, b5, b6, c1, c4, c5, a3 + b3, a2 − c2, a6b4 − a4c6 + b4c6, a6b3 + a6c3 + 2b3c6,
I2 a4b2 + a4c2 − 2b4c2, a4b3 + b3b4 + a4c3 − b4c3, a6b2 + a6c2 + b2c6 − c2c6,

b2b3 + 3b3c2 − b2c3 + c2c3, 2a6c2
2 + 2a4c2

3 + b2c2c6 + 7c2
2c6, 4b2

3b4 + b2
2c6 − 2b2c2c6 + c2

2c6,
4b3b4c3 + b2

2c6 + 2b2c2c6 − 3c2
2 c6, 4b4c2

3 + b2
2c6 + 6b2c2c6 + 9c2

2 c6
a1, a5, b1 − c1, b5 − c5, a2b3 + a3c2, a3b2 + a2c3, a4b6 + a6c4, a6b4 + a4c6, b2b3 − c2c3,
b4b6 − c4c6, a22b6 − a23c4, a23a4 + a22a6, a6b2

2 + a4c2
3 , a23b4 − a22c6, b2

3b4 − c2
2c6,

I3 b6c2
2 − b2

3c4 a4b2
3 + a6c2

2 , b2
2b6 − c2

3 c4, b4c2
3 − b2

2c6, a2b2b6 + a3c3c4,
a2b6c2 + a3b3c4, a2a6b2 − a3a4c3, a3a4b3 − a2a6c2, a3b3b4 + a2c2c6, a3b4c3 + a2b2c6,
a6b2c2 + a4b3c3, b2b6c2 − b3c3c4, b3b4c3 − b2c2c6
a1, a5, b1, c1, a3 + b3, a2 − c2, a4 + b4, a6 − c6, b5 − c5, b4b6 − c4c6,
2b2b6 − 3b3c5 − c3c5 + 2b2c6, b6c4 − c2

5 + b4c6 + 2c4c6, 2b4c3 + 2c3c4 − b2c5 − 3c2c5,
2b6c2 + b3c5 − c3c5 + 2c2c6, b2b3 + 3b3c2 − b2c3 + c2c3, 2b3b4 + 2b3c4 − b2c5 + c2c5,

I4 b4c2
5 − b2

4c6 − 2b4c4c6 − c2
4c6, 2c3c4c5 − b2c2

5 − 3c2c2
5 + b2b4c6 + 3b4c2c6 + b2c4c6 + 3c2c4c6,

2b3c4c5 − b2c2
5 + c2c2

5 + b2b4c6 − b4c2c6 + b2c4c6 − c2c4c6, 4c2
3c4 − 2b2c3c5−

6c2c3c5 + b2
2c6 + 6b2c2c6 + 9c2

2 c6, 4b3c3c4 − 2b2c3c5 + 2c2c3c5 + b2
2c6 + 2b2c2c6 − 3c2

2c6,
4b2

3c4 + 8b3c2c5 − 2b2c3c5 + 2c2c3c5 + b2
2c6 − 2b2c2c6 + c2

2c6
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Proof. For system (43) using a computer algebra system to compute the
functions B and h of (42). Let S be the set of parameters (a, b, c) and
k1, k2, and k3 for which system (43) can be transformed to a
time-reversible system (40) by a transformation (41).
S is the variety of the ideal I with generators listed in Table intersected
with t K = {(k1, k2, k3) : k1k2k3 6= 0}.
The point (a, b, c , k1, k2, k3) is in the set S if

1− k1u = 0, 1− k2v = 0, 1− k3w = 0, f = 0 ∀f ∈ I . (44)

Let J = 〈I , 1− k1u, 1− k2v , 1− k3w〉 ⊂ C[a, b, c , k1, k2, k3, u, v ,w ].
Then the set of solutions of (44) is the variety of the ideal J. The Zariski
closure of the projection of the variety V(J) onto the space of parameters
(a, b, c) is the variety of the six elimination ideal of J, the ideal J(6). By
the Elimination Theorem to find J(6) one can compute a Gröbner basis of
J with respect to the lex order with {k1, k2, k3, u, v ,w} > {a, b, c} and
take from the output polynomials that depend only on a, b, and c ,
obtaining a basis of J(6). The variety V = V(J(6)) is the Zariski closure
of π6(V(J)). Although not all systems corresponding to points of V are
time-reversible, all of them admit two analytic first integrals of the form
Ψ1(x1, x2, x3) = x1 + · · · and Ψ2(x1, x2, x3) = x2x3 + · · · , since the set of
systems admitting two integrals Ψ1 and Ψ2 is an algebraic set.
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Finally, we use the minAssGTZ command of Singular to obtain the
decomposition of J(6) as an intersection of prime ideals, which yields the
four ideals of the statement of the theorem, so that
V(J(6)) = V(I1) ∪ V(I2) ∪ V(I3) ∪ V(I4). �

2a1, 2a5, b1 − c1, b5 − c5, a1(b1 + c1), c4k2
2 − b6k2

3 , b2
5 + 2b6b4 − c2

5 − 2c6c4, b2
4k4

2 − c2
4k4

2 + b2
6k4

3 − c2
6k4

3 ,
b2k2 − 3c2k2 + 3b3k3 − c3k3, b5b4k2

2 − c5c4k2
2 + b6b5k2

3 − c6c5k2
3 , 4a2k2 − b2k2 − c2k2 + 4a3k3 + b3k3+

c3k3, 2a4k2
2 − b4k2

2 − c4k2
2 + 2a6k2

3 + b6k2
3 + c6k2

3 , a2b3 + a3b2 + b3b2 + 2a5b1 + b5b1 + b1c5 + a2c3 + a3c2
−c3c2 + 2a5c1 − b5c1 − c5c1, 2a4b2k3

2 + 3b4b2k3
2 + b2c4k3

2 + 2a4c2k3
2 − b4c2k3

2 − 3c4c2k3
2 + 2a6b3k3

3+
3b6b3k3

3 + b3c6k3
3 + 2a6c3k3

3 −b6c3k3
3 − 3c6c3k3

3 , 2a1b2k2 + 4a2b1k2 + b2b1k2 + 2a1c2k2 + b1c2k2
+4a2c1k2 − b2c1k2 − c2c1k2 + 2a1b3k3 + 4a3b1k3 + b3b1k3 + 2a1c3k3 + b1c3k3 + 4a3c1k3 − b3c1k3 − c3c1k3,
2a2b2k2

2 + b2
2k2

2 + 4a4b1k2
2 + 2b4b1k2

2 + 2b1c4k2
2 + 2a2c2k2

2 − c2
2k2

2 + 4a4c1k2
2 − 2b4c1k2

2 − 2c4c1k2
2

+2a3b3k2
3 + b2

3k2
3 + 4a6b1k2

3 + 2b6b1k2
3 + 2b1c6k2

3 + 2a3c3k2
3 − c2

3k2
3 + 4a6c1k2

3 − 2b6c1k2
3 − 2c6c1k2

3 ,
2a4b3k2 + 3b4b3k2 + 2a5b2k2 + 3b5b2k2 + b2c5k2 + b3c4k2 + 2a4c3k2 − b4c3k2 − 3c4c3k2 + 2a5c2k2
−b5c2k2 − 3c5c2k2 + 2a5b3k3 + 3b5b3k3 + 2a6b2k3 + 3b6b2k3 + b2c6k3 + b3c5k3 + 2a5c3k3 − b5c3k3
−3c5c3k3 + 2a6c2k3 − b6c2k3 − 3c6c2k3

Table: The Ideal I of the proof of theorem
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Example (Hu, Han, R., Physica D, 2013)

ẋ = x(a200x + a110y + a101z),
ẏ = −y + b200x2 + b110xy + b101xz + b020y2 + b002z2,
ż = z + c200x2 + c110xy + c101xz + c020y2 + c002z2.

(45)
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To find the necessary conditions for existence of integrals

φ = x +
∑

i+j+k>1

φijkx iy jzk (46)

ψ = yz +
∑

i+j+k>2

ψijx
iy jzk (47)

using the computer algebra system Mathematica we computed
polynomials gα and hα defined according to (26) and (27) up to |α| ≤ 8.
As the result of the calculations we have obtained the ideal
B8 = 〈gα, hα|α ∈ R, |α| ≤ 8〉.
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Then, we tried to find the irreducible decomposition of the variety V(B8)
of the ideal B8 using the routine minAssGTZ of the computer algebra
system Singular. It was not possible to complete computations on our
facilities. However the linear transformation

y 7→ by , z 7→ cz ,

where bc 6= 0, brings (45) to a quadratic system with the same linear
part and b011 is changed to b011/c , and c011 is changed to c011/b.
Thus, to obtain the necessary conditions for integrability of system (45)
it is sufficient to consider separately the following four cases:

(i)b011 = c011 = 0(ii)b011 = 0c011 = 1(iii)b011 = 1, c011 = 0(iv)b011 = c011 = 1.
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Theorem

Consider three dimensional system (45) with b011 = c011 = 0. The
system is integrable if and only if a200 = 0 and one of the following
conditions is satisfied:

1) c200 = b110 + c101 = b200 = a101c110 + b101c020 − c110c002 − a110c101
= a110b101 − b020b101 + b002c110 + a101c101 = 0,

2) b2
002c3

110 + b3
101c2

020 = b020b2
101c020 − b002c2

110c002 = b020b002c110 + b101c020c002
= b2

020b101 + c110c2
002 = b3

020b002 − c020c3
002 = −b2

020b002c200 + b200c020c2
002

= b020b101c200 + b200c110c002 = b002c200c110 + b200b101c020 = b200b002c2
110 − b2

101c200c020
= b200b020 − c200c002 = −b020b002c2

200 + b2
200c020c002 = b101c2

200 + b2
200c110

= −b002c3
200 + b3

200c020 = −a101b020 + a110c002 = a110b101c200 + a101b200c110
= −a101b002c2

110 + a110b2
101c020 = a110b002c110 + a101b101c020 = a110b002c2

200 − a101b2
200c020

= a110b020b101 + a101c110c002 = a110b020b002c200 − a101b200c020c002
= a110b2

020b002 − a101c020c2
002 = a110b200 − a101c200 = a2110b101 + a2101c110

= a2110b002c200 − a2101b200c020 = a2110b020b002 − a2101c020c002 = a3110b002 − a3101c020
= b110 + c101 = 0,

3) c002 = b020 = b110 + c101 = a101 = a110 = 0.
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