Algorithmic Verification of Linearizability for Ordinary Differential Equations

Dmitry A. Lyakhov ${ }^{1}$, Vladimir P. Gerdt ${ }^{2}$ and Dominik L. Michels ${ }^{1,3}$

${ }^{1}$ Computational Sciences Group
King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
${ }^{2}$ Laboratory of Information Technologies
Joint Institute for Nuclear Research, Dubna, Russia
${ }^{3}$ Department of Computer Science
Stanford University, Stanford, USA
Belarusian State University, December 21, 2017

Contents

(1) Introduction
(2) Underlying Equations
(3) Symmetry Analysis of Differential Equations
(4) Linearization Test I
(5) Differential Thomas Decomposition
(6) Linearization Test II
(7) Conclusions

8 References

Introduction

How to solve differential equation?

$$
\begin{equation*}
y^{\prime \prime \prime}+\frac{3 y^{\prime}}{y}\left(y^{\prime \prime}-y^{\prime}\right)-3 y^{\prime \prime}+2 y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

It admits rich Lie symmetry group, however Maple solver dsolve outputs

$$
\begin{aligned}
& y(x)=\mathrm{e}
\end{aligned}
$$

On the other hand, Eq. (1) admits the linearization [Ibragimov, 2009]

Introduction

How to solve differential equation?

$$
\begin{equation*}
y^{\prime \prime \prime}+\frac{3 y^{\prime}}{y}\left(y^{\prime \prime}-y^{\prime}\right)-3 y^{\prime \prime}+2 y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

It admits rich Lie symmetry group, however Maple solver dsolve outputs

$$
\begin{aligned}
& y(x)=\mathrm{e}
\end{aligned}
$$

On the other hand, Eq. (1) admits the linearization [Ibragimov, 2009]

$$
u^{\prime \prime \prime}-\frac{2}{t^{3}} u=0, \quad t=\exp (x), \quad u=y^{2}
$$

Prehistory

The linearization problem for a second-order ODE

$$
\begin{equation*}
y^{\prime \prime}+f\left(x, y, y^{\prime}\right)=0 \tag{2}
\end{equation*}
$$

was solved by Sophus Lie. He showed that only equations of the following form are linearizable by point transformations:

$$
\begin{equation*}
f=F_{3}(x, y)\left(y^{\prime}\right)^{3}+F_{2}(x, y)\left(y^{\prime}\right)^{2}+F_{1}(x, y) y^{\prime}+F_{0}(x, y) \tag{3}
\end{equation*}
$$

Theorem.

Equation (2) is linearizable by point transformation if and only if

$$
\begin{gather*}
3\left(F_{3}\right)_{x x}-2\left(F_{2}\right)_{x y}+\left(F_{1}\right)_{y y}-3 F_{1}\left(F_{3}\right)_{x}+2 F_{2}\left(F_{2}\right)_{x} \\
-3 F_{3}\left(F_{1}\right)_{x}+3 F_{0}\left(F_{3}\right)_{y}+6 F_{3}\left(F_{0}\right)_{y}-F_{2}\left(F_{1}\right)_{y}=0 \tag{4}\\
\left(F_{2}\right)_{x x}-2\left(F_{1}\right)_{x y}+3\left(F_{0}\right)_{y y}-6 F_{0}\left(F_{3}\right)_{x}+F_{1}\left(F_{2}\right)_{x} \\
-3 F_{3}\left(F_{0}\right)_{x}+3 F_{0}\left(F_{2}\right)_{y}+3 F_{2}\left(F_{0}\right)_{y}-2 F_{1}\left(F_{1}\right)_{y}=0 .
\end{gather*}
$$

In this paper we consider ODEs of the form

$$
\begin{equation*}
y^{(n)}+f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)=0, \quad y^{(k)}:=\frac{d^{k} y}{d x^{k}} \tag{5}
\end{equation*}
$$

with $f \in \mathcal{C}\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)$ solved with respect to the highest order derivative.

Given an ODE of the form (5), our aim is to check the existence of an invertible transformation

which maps (5) into a linear n-th order homogeneous equation

The invertibility of (6) is provided by the inequation

In this paper we consider ODEs of the form

$$
\begin{equation*}
y^{(n)}+f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)=0, \quad y^{(k)}:=\frac{d^{k} y}{d x^{k}} \tag{5}
\end{equation*}
$$

with $f \in \mathcal{C}\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)$ solved with respect to the highest order derivative.

Given an ODE of the form (5), our aim is to check the existence of an invertible transformation

$$
\begin{equation*}
u=\phi(x, y), \quad t=\psi(x, y) \tag{6}
\end{equation*}
$$

which maps (5) into a linear n-th order homogeneous equation

$$
\begin{equation*}
u^{(n)}(t)+\sum_{k=0}^{n-1} a_{k}(t) u^{(k)}(t)=0, \quad u^{(k)}:=\frac{d^{k} u}{d t^{k}} \tag{7}
\end{equation*}
$$

The invertibility of (6) is provided by the inequation

In this paper we consider ODEs of the form

$$
\begin{equation*}
y^{(n)}+f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)=0, \quad y^{(k)}:=\frac{d^{k} y}{d x^{k}} \tag{5}
\end{equation*}
$$

with $f \in \mathcal{C}\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)$ solved with respect to the highest order derivative.

Given an ODE of the form (5), our aim is to check the existence of an invertible transformation

$$
\begin{equation*}
u=\phi(x, y), \quad t=\psi(x, y) \tag{6}
\end{equation*}
$$

which maps (5) into a linear n-th order homogeneous equation

$$
\begin{equation*}
u^{(n)}(t)+\sum_{k=0}^{n-1} a_{k}(t) u^{(k)}(t)=0, \quad u^{(k)}:=\frac{d^{k} u}{d t^{k}} . \tag{7}
\end{equation*}
$$

The invertibility of (6) is provided by the inequation

$$
J:=\phi_{x} \psi_{y}-\phi_{y} \psi_{x} \neq 0
$$

Lie Symmetry

One way to check the linearizability of Eq. (5) is to follow the classical approach by Lie to study the symmetry properties of Eq. (5) under one-parameter group of transformation [Lie, 1883]

```
Definition.
Set of transformation }\mp@subsup{T}{a}{}:\tilde{x}=\Phi(x,y,a),\tilde{y}=\psi(x,y,a) is calle
one-parameter group of transformation of differential equation
F(x,y,\mp@subsup{y}{}{\prime},\ldots,\mp@subsup{y}{}{(n)})=0
1) it transforms any solution }y(x)\mathrm{ in old variables (x,y) to solution }\tilde{y}(\tilde{x})\mathrm{ in
new variables (\tilde{x},\tilde{y})\mathrm{ ,}
2) it is a group: }\mp@subsup{T}{a}{}\mp@subsup{T}{b}{}=\mp@subsup{T}{a+b}{}\mathrm{ , where (a-group parameter).
```


Lie Symmetry

One way to check the linearizability of Eq. (5) is to follow the classical approach by Lie to study the symmetry properties of Eq. (5) under one-parameter group of transformation [Lie, 1883]

Definition.

Set of transformation $T_{a}: \tilde{x}=\Phi(x, y, a), \tilde{y}=\Psi(x, y, a)$ is called one-parameter group of transformation of differential equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

if

1) it transforms any solution $y(x)$ in old variables (x, y) to solution $\tilde{y}(\tilde{x})$ in
new variables (\tilde{x}, \tilde{y}),
$2)$ it is a group: $T_{a} T_{b}=T_{a+b}$, where (a - group parameter).

Lie Symmetry

One way to check the linearizability of Eq. (5) is to follow the classical approach by Lie to study the symmetry properties of Eq. (5) under one-parameter group of transformation [Lie, 1883]

Definition.

Set of transformation $T_{a}: \tilde{x}=\Phi(x, y, a), \tilde{y}=\Psi(x, y, a)$ is called one-parameter group of transformation of differential equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

if

1) it transforms any solution $y(x)$ in old variables (x, y) to solution $\tilde{y}(\tilde{x})$ in new variables (\tilde{x}, \tilde{y}),
2) it is a group: $T_{a} T_{b}=T_{a+b}$, where ($a-$ group parameter).

Lie Symmetry

One way to check the linearizability of Eq. (5) is to follow the classical approach by Lie to study the symmetry properties of Eq. (5) under one-parameter group of transformation [Lie, 1883]

Definition.

Set of transformation $T_{a}: \tilde{x}=\Phi(x, y, a), \tilde{y}=\Psi(x, y, a)$ is called one-parameter group of transformation of differential equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

if

1) it transforms any solution $y(x)$ in old variables (x, y) to solution $\tilde{y}(\tilde{x})$ in new variables (\tilde{x}, \tilde{y}),
$2)$ it is a group: $T_{a} T_{b}=T_{a+b}$, where ($a-$ group parameter).

Infinitesimal Transformation

The key point is to study vector field of infinitesimal transformation, which is the first term in Taylor expansion of one-parameter group of transformation

$$
\begin{equation*}
\tilde{x}=x+\varepsilon \underline{\xi(x, y)}+\mathcal{O}\left(\varepsilon^{2}\right), \quad \tilde{y}=y+\varepsilon \underline{\eta(x, y)}+\mathcal{O}\left(\varepsilon^{2}\right) . \tag{8}
\end{equation*}
$$

Infinitesimal symmetry operators

$$
\mathcal{X}:=\xi(x, y) \partial_{x}+\eta(x, y) \partial_{y}
$$

form Lie algebra L under Lie bracket

$$
\left[\mathcal{\chi}_{1}, \mathcal{x}_{2}\right]=\mathcal{\chi}_{1} \mathcal{X}_{2}-\mathcal{x}_{2} \mathcal{\chi}_{1} .
$$

Sophus Lie showed that Lie algebra of n-dimensional ODE satisfies

- if $n=2$, then $\operatorname{dim}(L) \leq 8$
- if $n>2$, then $\operatorname{dim}(L) \leq n+4$

Infinitesimal Transformation

The key point is to study vector field of infinitesimal transformation, which is the first term in Taylor expansion of one-parameter group of transformation

$$
\begin{equation*}
\tilde{x}=x+\varepsilon \underline{\xi(x, y)}+\mathcal{O}\left(\varepsilon^{2}\right), \quad \tilde{y}=y+\varepsilon \underline{\eta(x, y)}+\mathcal{O}\left(\varepsilon^{2}\right) . \tag{8}
\end{equation*}
$$

Infinitesimal symmetry operators

$$
\mathcal{X}:=\xi(x, y) \partial_{x}+\eta(x, y) \partial_{y}
$$

form Lie algebra L under Lie bracket

$$
\left[\mathcal{X}_{1}, \mathcal{X}_{2}\right]=\mathcal{X}_{1} \mathcal{X}_{2}-\mathcal{X}_{2} \mathcal{X}_{1} .
$$

Sophus Lie showed that Lie algebra of n-dimensional ODE satisfies
\square

- if $n=2$, then $\operatorname{dim}(L) \leq 8$
- if $n>2$, then $\operatorname{dim}(L) \leq n+4$

Infinitesimal Transformation

The key point is to study vector field of infinitesimal transformation, which is the first term in Taylor expansion of one-parameter group of transformation

$$
\begin{equation*}
\tilde{x}=x+\varepsilon \underline{\xi(x, y)}+\mathcal{O}\left(\varepsilon^{2}\right), \quad \tilde{y}=y+\varepsilon \underline{\eta(x, y)}+\mathcal{O}\left(\varepsilon^{2}\right) . \tag{8}
\end{equation*}
$$

Infinitesimal symmetry operators

$$
\mathcal{X}:=\xi(x, y) \partial_{x}+\eta(x, y) \partial_{y}
$$

form Lie algebra L under Lie bracket

$$
\left[\mathcal{X}_{1}, \mathcal{X}_{2}\right]=\mathcal{X}_{1} \mathcal{X}_{2}-\mathcal{X}_{2} \mathcal{X}_{1} .
$$

Sophus Lie showed that Lie algebra of n-dimensional ODE satisfies

- if $n=1$, then $\operatorname{dim}(L)=\infty$
- if $n>2$, then $\operatorname{dim}(L) \leq n+4$

Infinitesimal Transformation

The key point is to study vector field of infinitesimal transformation, which is the first term in Taylor expansion of one-parameter group of transformation

$$
\begin{equation*}
\tilde{x}=x+\varepsilon \underline{\xi(x, y)}+\mathcal{O}\left(\varepsilon^{2}\right), \quad \tilde{y}=y+\varepsilon \underline{\eta(x, y)}+\mathcal{O}\left(\varepsilon^{2}\right) . \tag{8}
\end{equation*}
$$

Infinitesimal symmetry operators

$$
\mathcal{X}:=\xi(x, y) \partial_{x}+\eta(x, y) \partial_{y}
$$

form Lie algebra L under Lie bracket

$$
\left[\mathcal{X}_{1}, \mathcal{X}_{2}\right]=\mathcal{X}_{1} \mathcal{X}_{2}-\mathcal{X}_{2} \mathcal{X}_{1} .
$$

Sophus Lie showed that Lie algebra of n-dimensional ODE satisfies

- if $n=1$, then $\operatorname{dim}(L)=\infty$
- if $n=2$, then $\operatorname{dim}(L) \leq 8$

Infinitesimal Transformation

The key point is to study vector field of infinitesimal transformation, which is the first term in Taylor expansion of one-parameter group of transformation

$$
\begin{equation*}
\tilde{x}=x+\varepsilon \underline{\xi(x, y)}+\mathcal{O}\left(\varepsilon^{2}\right), \quad \tilde{y}=y+\varepsilon \underline{\eta(x, y)}+\mathcal{O}\left(\varepsilon^{2}\right) . \tag{8}
\end{equation*}
$$

Infinitesimal symmetry operators

$$
\mathcal{X}:=\xi(x, y) \partial_{x}+\eta(x, y) \partial_{y}
$$

form Lie algebra L under Lie bracket

$$
\left[\mathcal{X}_{1}, \mathcal{X}_{2}\right]=\mathcal{X}_{1} \mathcal{X}_{2}-\mathcal{X}_{2} \mathcal{X}_{1} .
$$

Sophus Lie showed that Lie algebra of n-dimensional ODE satisfies

- if $n=1$, then $\operatorname{dim}(L)=\infty$
- if $n=2$, then $\operatorname{dim}(L) \leq 8$
- if $n>2$, then $\operatorname{dim}(L) \leq n+4$

Basic Theorem

Linear homogeneous n-th order equation (7) with variable coefficients admits the Lie point symmetry group

- $\tilde{t}=t, \tilde{u}=u+c_{i} \cdot v_{i}(t), i=1 \ldots n$
- $\tilde{t}=t, \tilde{u}=c_{n+1} \cdot u$
where c_{i}, c_{n+1} are constants (the group parameters) and $\left\{v_{i}(t)\right\}$ is the fundamental solution of (7).

$$
\begin{aligned}
& \text { The symmetry algebra has the } n \text {-dimensional abelian Lie subalgebra } \\
& \qquad L_{n+1}:=\left\{\mathcal{X}_{i}:=v_{i}(t) \partial_{u}(i=1, . ., n), \mathcal{X}_{n+1}:=u \partial_{u}\right\}
\end{aligned}
$$

Theorem

A necessary and sufficient condition for the linearization of (5) with $n>3$ via a point transformation is the existence of an abelian n-dimensional subalgebra in symmetry algebra.

Basic Theorem

Linear homogeneous n-th order equation (7) with variable coefficients admits the Lie point symmetry group

- $\tilde{t}=t, \tilde{u}=u+c_{i} \cdot v_{i}(t), i=1 \ldots n$
- $\tilde{t}=t, \tilde{u}=c_{n+1} \cdot u$
where c_{i}, c_{n+1} are constants (the group parameters) and $\left\{v_{i}(t)\right\}$ is the fundamental solution of (7).

The symmetry algebra has the n-dimensional abelian Lie subalgebra

$$
\begin{equation*}
L_{n+1}:=\left\{\mathcal{X}_{i}:=v_{i}(t) \partial_{u}(i=1, . ., n), \mathcal{X}_{n+1}:=u \partial_{u}\right\} . \tag{9}
\end{equation*}
$$

[^0] in symmetry algebra.

Basic Theorem

Linear homogeneous n-th order equation (7) with variable coefficients admits the Lie point symmetry group

- $\tilde{t}=t, \tilde{u}=u+c_{i} \cdot v_{i}(t), i=1 \ldots n$
- $\tilde{t}=t, \tilde{u}=c_{n+1} \cdot u$
where c_{i}, c_{n+1} are constants (the group parameters) and $\left\{v_{i}(t)\right\}$ is the fundamental solution of (7).

The symmetry algebra has the n-dimensional abelian Lie subalgebra

$$
\begin{equation*}
L_{n+1}:=\left\{\mathcal{X}_{i}:=v_{i}(t) \partial_{u}(i=1, . ., n), \mathcal{X}_{n+1}:=u \partial_{u}\right\} \tag{9}
\end{equation*}
$$

Theorem

A necessary and sufficient condition for the linearization of (5) with $n \geq 3$ via a point transformation is the existence of an abelian n-dimensional subalgebra in symmetry algebra.

LinearizationTest I

What can we do algorithmically?

- generation of determining equations
- dimension of solution space (by Differential Dimension Polynomial)
- structure constants of Lie algebra [Reid. 1991$]$
$\mathcal{X}=$ truncated Taylor series $\rightarrow\left[\mathcal{X}_{i}, \mathcal{X}_{j}\right]=\sum_{k=1}^{m} C_{i, j}^{k} \mathcal{X}_{k}, \quad 1 \leq i<j \leq m$.

Theorem.

Fc. (5) with $n \geq 2$ is linearizable by a point transformation if and only if one f the following conditions is fulfilled:$n=2, m=8$
(2) $n>3, m=n+4$;
(3) $n \geq 3, m \in\{n+1, n+2\}$ and derived algebra is abelian and has dimension n.

LinearizationTest I

What can we do algorithmically?

- generation of determining equations
- dimension of solution space (by Differential Dimension Polynomial)
- structure constants of Lie algebra [Reid, 1991]
$\mathcal{X}=$ truncated Taylor series $\rightarrow\left[\mathcal{\chi}_{i}, \chi_{j}\right]=\sum_{k=1}^{m} C^{k}, \chi_{k}, \quad 1 \leq i<j \leq m$.

Theorem.

Ea. (5) witl $n \geq 2$ is linearizable by a point transformation if and only if one ff the following conditions is fulfilled:$n=2, m=8 ;$
(3) $n \geq 3, m=n+4$

- $n \geq 3, m \in\{n+1, n+2\}$ and derived algebra is abelian and has dimension n.

LinearizationTest I

What can we do algorithmically?

- generation of determining equations
- dimension of solution space (by Differential Dimension Polynomial)
- structure constants of Lie algebra [Reid, 1991

Theorem.

```
Eg. (5) with n>2
f the following conditions is fulfilled:
(1) }n=2,m=8
(3) }n\geq3,m=n+
(0)}n\geq3,m\in{n+1,n+2} and derived algebra is abelian and has
    dimension n.
```


LinearizationTest I

What can we do algorithmically?

- generation of determining equations
- dimension of solution space (by Differential Dimension Polynomial)
- structure constants of Lie algebra [Reid, 1991]
$\mathcal{X}=$ truncated Taylor series $\rightarrow\left[\mathcal{X}_{i}, \mathcal{X}_{j}\right]=\sum_{k=1}^{m} C_{i, j}^{k} \mathcal{X}_{k}, \quad 1 \leq i<j \leq m$.

LinearizationTest I

What can we do algorithmically?

- generation of determining equations
- dimension of solution space (by Differential Dimension Polynomial)
- structure constants of Lie algebra [Reid, 1991]
$\mathcal{X}=$ truncated Taylor series $\rightarrow\left[\mathcal{X}_{i}, \mathcal{X}_{j}\right]=\sum_{k=1}^{m} C_{i, j}^{k} \mathcal{X}_{k}, \quad 1 \leq i<j \leq m$.

Theorem.

Eq. (5) with $n \geq 2$ is linearizable by a point transformation if and only if one of the following conditions is fulfilled:
(1) $n=2, m=8$;
(3) $n \geq 3, m=n+4$;
(3) $n \geq 3, m \in\{n+1, n+2\}$ and derived algebra is abelian and has dimension n.

Algorithm: LinearizationTest I (q)

Input: q, a nonlinear differential equation of form (5)
Output: True, if q is linearizable and False, otherwise
1: $n:=\operatorname{order}(q)$;
2: $D S:=$ DeterminingSystem (q);
3: IDS := InvolutiveDeterminingSystem (DS);
4: $m:=\operatorname{dim}($ LieSymmetryAlgebra) (IDS);
5: if $n=1 \vee(n=2 \wedge m=8) \vee(n>2 \wedge m=n+4)$ then
6: return True;
7: elif $n>2 \wedge(m=n+1 \vee m=n+2)$ then
8: $\quad L:=$ LieSymmetryAlgebra (IDS);
9: $\quad D A:=$ DerivedAlgebra (L);
10: \quad if $D A$ is abelian and $\operatorname{dim}(D A)=n$ then
11: return True;
12: fi
13: fi
14: return False;

Differential Thomas Decomposition

The differential Thomas decomposition is universal algorithmic tool, which provides a characteristic decomposition of the radical of the differential ideal, generated by differential system.
Definition.
A differential system is a system $S:=\left\{S=, S^{\neq}\right\}$of differential equations and (possibly) inequations of the form
$S^{=}:=\left\{g_{1}=0, \ldots, g_{s}=0\right\}, S^{\neq}:=\left\{h_{1} \neq 0, \ldots, h_{t} \neq 0\right\}, s \geq 1, t \geq 0$.
\square applied to a differential system S yields a finite set of involutive and simple differential systems:

- every simple system has a solution under \mathcal{C}
- solution spaces of two different systems are distinct

Differential Thomas Decomposition

The differential Thomas decomposition is universal algorithmic tool, which provides a characteristic decomposition of the radical of the differential ideal, generated by differential system.

Definition.

A differential system is a system $S:=\left\{S^{=}, S^{\neq}\right\}$of differential equations and (possibly) inequations of the form

$$
S^{=}:=\left\{g_{1}=0, \ldots, g_{s}=0\right\}, S^{\neq}:=\left\{h_{1} \neq 0, \ldots, h_{t} \neq 0\right\}, s \geq 1, t \geq 0
$$

The Thomas decomposition
 applied to a differential system S yields a finite set of involutive and simple

differential systems:

- every simple system has a solution under \mathcal{C}
(2) solution spaces of two different systems are distinct

Differential Thomas Decomposition

The differential Thomas decomposition is universal algorithmic tool, which provides a characteristic decomposition of the radical of the differential ideal, generated by differential system.

Definition.

A differential system is a system $S:=\left\{S^{=}, S^{\neq}\right\}$of differential equations and (possibly) inequations of the form

$$
S^{=}:=\left\{g_{1}=0, \ldots, g_{s}=0\right\}, S^{\neq}:=\left\{h_{1} \neq 0, \ldots, h_{t} \neq 0\right\}, s \geq 1, t \geq 0
$$

The Thomas decomposition [Bachler,Gerdt,Lange-Hegermann,Robertz, 2012] applied to a differential system S yields a finite set of involutive and simple differential systems:
(1) every simple system has a solution under \mathcal{C}
(2) solution spaces of two different systems are distinct

LinearizationTest II

Substitution

$$
[u=\phi(x, y), \quad t=\psi(x, y)] \rightarrow u^{(n)}(t)+\sum_{k} a_{k}(t) u^{(k)}(t)=0 .
$$

By differentiating the equality $u(\psi(x, y(x)))=\phi(x, y(x))$

$$
\begin{aligned}
& u^{\prime}(t)=\frac{\phi_{x}+\phi_{y} y^{\prime}}{\psi_{x}+\psi_{y} y^{\prime}}, \\
& u^{\prime \prime}(t)=\frac{\phi_{x} \psi_{y}-\phi_{y} \psi_{x}}{\left(\psi_{x}+\psi_{y} y^{\prime}\right)^{3}} y^{\prime \prime}+\frac{\left(\psi_{x}+\psi_{y} y^{\prime}\right)\left(\phi_{x x}+\phi_{x y} y^{\prime}+\phi_{y y}\left(y^{\prime}\right)^{2}\right)}{\left(\psi_{x}+\psi_{y} y^{\prime}\right)^{3}}, \\
& \vdots \\
& u^{(n)}(t)=\frac{J}{\left(\psi_{x}+\psi_{y} y^{\prime}\right)^{n+1}} y^{(n)}+\frac{P_{n}\left(y^{\prime}, \ldots, y^{(n-1)}\right)}{\left(\psi_{x}+\psi_{y} y^{\prime}\right)^{2 n-1}} .
\end{aligned}
$$

LinearizationTest II

Definition.

The differential system made up of the above constructed PDE set $S^{=}$and of the inequation set $S^{\neq}=\{J \neq 0\}$ will be called linearizing differential system.

> Theorem.
> Eq. (5) is linearizable via a point transformation (6) if and only if the linearizing differential system is consistent, i.e. has a solution. It is equivalent to statement that result of differential Thomas decomposition algorithm applied to linearizing system is non-empty set.

Remark.

Tinearizing differential system for given ODE $(n \geq 2)$ is finite-dimensional.

LinearizationTest II

Definition.

The differential system made up of the above constructed PDE set $S^{=}$and of the inequation set $S^{\neq}=\{J \neq 0\}$ will be called linearizing differential system.

Theorem.

Eq. (5) is linearizable via a point transformation (6) if and only if the linearizing differential system is consistent, i.e. has a solution. It is equivalent to statement that result of differential Thomas decomposition algorithm applied to linearizing system is non-empty set.

[^1]
LinearizationTest II

Definition.

The differential system made up of the above constructed PDE set $S^{=}$and of the inequation set $S^{\neq}=\{J \neq 0\}$ will be called linearizing differential system.

Theorem.

Eq. (5) is linearizable via a point transformation (6) if and only if the linearizing differential system is consistent, i.e. has a solution. It is equivalent to statement that result of differential Thomas decomposition algorithm applied to linearizing system is non-empty set.

Remark.

Linearizing differential system for given ODE $(n \geq 2)$ is finite-dimensional.

Algorithm: LinearizationTest II (q, P, H)

Input: q, a nonlinear differential equation of form (5) of order ≥ 2; P, a set of parameters; H, a set of undetermined functions in (x, y)
Output: Set G of differential systems for functions ϕ and ψ in (6) and (possibly) in elements of P and H if (5) is linearizable, and the empty set, otherwise
1: $n:=\operatorname{order}(q)$;
2: $G:=\emptyset$;
3: $\quad M:=$ numerator $(f) ; \quad N:=$ denominator (f);
4: $J:=\phi_{x} \psi_{y}-\phi_{y} \psi_{x}$;
5: if $n=2$ then
6: $\quad r:=u^{\prime \prime}(t)=0$;
7: $\quad A:=\emptyset$;
8: else
9: $\quad r:=u^{(n)}(t)+\sum_{k=0}^{n-3} a_{k}(t) u^{(k)}(t)=0$;
10: $\quad A:=\left\{a_{0}, \ldots, a_{n-3}\right\}$;
11: fi
12: $r \xrightarrow{\text { by }(6)} y^{(n)}+\frac{R\left(y^{\prime}, \ldots, y^{(n-1)}\right)}{J \cdot\left(\psi_{x}+\psi_{y} y^{\prime}\right)^{(n-2)}}=0$;
13: $T:=R \cdot N-M \cdot J \cdot\left(\psi_{x}+\psi_{y} y^{\prime}\right)^{(n-2)}=0$;
14: $S^{=}:=\left\{c=0 \mid c \in \operatorname{coeffs}\left(T,\left\{y^{\prime}, \ldots, y^{(n-1)}\right\}\right)\right\}$;
15: $S^{=}:=S^{=} \cup_{p \in P}\left\{p_{x}=0, p_{y}=0\right\}$;
16: $S=:=S=\cup_{a \in A}\left\{a_{x} \psi_{y}-a_{y} \psi_{x}=0\right\}$;
17: $s^{\neq}:=\{J \neq 0\}$;
18: $G:=$ ThomasDecomposition $\left(S^{=}, S^{f}\right)$;
19: return G;

Examples

1.

$$
y^{\prime \prime \prime}+\frac{3 y^{\prime}}{y}\left(y^{\prime \prime}-y^{\prime}\right)-3 y^{\prime \prime}+2 y^{\prime}-y=0
$$

Examples

1.

$$
y^{\prime \prime \prime}+\frac{3 y^{\prime}}{y}\left(y^{\prime \prime}-y^{\prime}\right)-3 y^{\prime \prime}+2 y^{\prime}-y=0
$$

2.

$$
y^{\prime \prime}+F_{3}(x, y)\left(y^{\prime}\right)^{3}+F_{2}(x, y)\left(y^{\prime}\right)^{2}+F_{1}(x, y) y^{\prime}+F_{0}(x, y)=0
$$

Conclusions

- For the first time, the problem of the linearization test for a wide class of ordinary differential equation of arbitrary order was algorithmically solved.
- LinearizationTest I is a efficient way to check the linearizability of ODE, based only on algorithmic symmetry properties.
- LinearizationTest II allows to check linearizability and to construct linearizing mapping.
- The second algorithm may also improve the built-in Maple solver dsolve of differential equations.
- Algorithms admit generalization to system of differential equations and higher symmetries.

Conclusions

- For the first time, the problem of the linearization test for a wide class of ordinary differential equation of arbitrary order was algorithmically solved.
- LinearizationTest I is a efficient way to check the linearizability of ODE, based only on algorithmic symmetry properties.
- LinearizationTest II allows to check linearizability and to construct linearizing mapping.
- The second algorithm may also improve the built-in Maple solver dsolve of differential equations.
- Algorithms admit generalization to system of differential equations and higher symmetries.

Conclusions

- For the first time, the problem of the linearization test for a wide class of ordinary differential equation of arbitrary order was algorithmically solved.
- LinearizationTest I is a efficient way to check the linearizability of ODE, based only on algorithmic symmetry properties.
- LinearizationTest II allows to check linearizability and to construct linearizing mapping.
- The second algorithm may also improve the built-in Maple solver dsolve of differential equations.
- Algorithms admit generalization to system of differential equations and higher symmetries.

Conclusions

- For the first time, the problem of the linearization test for a wide class of ordinary differential equation of arbitrary order was algorithmically solved.
- LinearizationTest I is a efficient way to check the linearizability of ODE, based only on algorithmic symmetry properties.
- LinearizationTest II allows to check linearizability and to construct linearizing mapping.
- The second algorithm may also improve the built-in Maple solver dsolve of differential equations.
- Algorithms admit generalization to system of differential equations and higher symmetries.

Conclusions

- For the first time, the problem of the linearization test for a wide class of ordinary differential equation of arbitrary order was algorithmically solved.
- LinearizationTest I is a efficient way to check the linearizability of ODE, based only on algorithmic symmetry properties.
- LinearizationTest II allows to check linearizability and to construct linearizing mapping.
- The second algorithm may also improve the built-in Maple solver dsolve of differential equations.
- Algorithms admit generalization to system of differential equations and higher symmetries.

Acknowledgments

References

㫫
Sophus Lie (1883).
Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen x , y, die eine Gruppe von Transformationen gestatten. III. Archiv for Matematik og Naturvidenskab, 8(4), 1883, 371-458. Reprinted in Lie's Gesammelte Abhandlungen, 5, paper XIY, 1924, 362-427.

Nail Ibragimov (2006).
A Practical Course in Differential Equations and Mathematical Modelling. Higher Education Press Li. 364 pp.
Fazal Mahomed and Peter Leach (1991).
Symmetry Lie Algebra of nth Order Ordinary Differential Equations. Journal of Mathematical Analysis and Applications 151, no. 1 (1990): 80-107.
Greg Reid (1991).
Finding abstract Lie symmetry algebras of differential equations without integrating determining equations.
European Journal of Applied Mathematics 2, no. 04 (1991): 319-340
Thomas Bächler, Vladimir Gerdt, Markus Lange-Hegermann, and Daniel Robertz (2012).
Algorithmic Thomas decomposition of algebraic and differential systems Journal of Symbolic Computation 47, no. 10 (2012): 1233-1266.

[^0]: Theorem
 A necessary and sufficient condition for the linearization of (5) with $n \geqslant 3$ via a point transformation is the existence of an abelian n-dimensional subalgebra

[^1]: Remark.
 Linearizing differential system for given ODE $(n \geq 2)$ is finite-dimensional.

